On Mechanisms of “Grain Boundary Sliding”, in Light of the Kaibyshev-Valiev Data on Two Limit “Non-Equilibrium” GB States in Deformed Metallic Materials

Article Preview

Abstract:

Based on the results of the thermodynamic analysis of a number of experimental data, and in the light of the Kaibyshev-Valiev discovery, the possibility of periodic formation of a liquid-like state in the nanoregions of extremely "non-equilibrium" grain boundaries and in other structural defect regions in metallic polycrystals during their superplastic deformation and intense plastic deformation is considered. It is also considered important differences between the liquid-like state and the glass-like (amorphous) state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-125

Citation:

Online since:

July 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ya.I. Frenkel, Vvedenie v teoriyu metallov (Introduction to Metal Theory), Nauka, Leningrad, (1972).

Google Scholar

[2] L.D. Landau, Zh. Exp. Teor. Fiz. 7, no. 1 (1937) 19.

Google Scholar

[3] O.A. Kaibyshev, R.Z. Valiev, The phenomenon of formation of non-equilibrium grain boundaries when they absorb lattice dislocations. Bulletin Discoveries & Inventions, # 7. Diploma number 339, 1988. Priority data of April 13, (1977).

Google Scholar

[4] R.Z. Valiev, O.A. Kaibyshev, Dokl. Akad. Nauk SSSR, 258 (1981) 91.

Google Scholar

[5] R.Z. Valiev, V.Yu. Gertsman, O.A. Kaibyshev, Metallofizika, 8 (1986) 72.

Google Scholar

[6] O.A. Kaibyshev, R.Z. Valiev, Granitsy zeren i svoistva metallov (Grain Boundaries and the Properties of Metals), Metallurgiya, Moscow, (1987).

Google Scholar

[7] O.A. Kaibyshev, Czech J. Phys. B, 38 (1988) 395.

Google Scholar

[8] Yu.S. Nechaev, J. Phys. Colloq. 51, no. C1 (1990) 287.

Google Scholar

[9] Yu.S. Nechaev, Fiz. Khim. Obrab. Mater. 26, no. 5 (1992) 610.

Google Scholar

[10] Yu.S. Nechaev, Phys.-Usp. 51, no. 7 (2008) 681.

Google Scholar

[11] Yu.S. Nechaev, V.P. Filippova, R.V Sundeev, Bull. Russ. Acad. Sci.: Phys. 81, no. 11 (2017) 1317.

Google Scholar

[12] Ya.D. Vishnyakov, Yu.S. Nechaev, S.A. Vladimirov, Yu.A. Pustov, Izv. Akad. Nauk SSSR, Met., 1980, no. 4, p.174.

Google Scholar

[13] X. Sauvage, A. Ganeev, R. Valiev, et al., Adv. Eng. Mater. 14, no. 11 (2012) 968.

Google Scholar

[14] L.S. Shvindlerman, in Trudy Mezhdunarodnoi konferentsii Fazovye prevrashcheniya i prochnost' kristallov" (Proc. Int. Conf. "Phase Transformations and Crystal Strength,) Chernogolovka, 2010, p.18.

Google Scholar

[15] P.H. Pumphrey, H. Gleiter, Philos. Mag. 3, no. 3 (1974) 593.

Google Scholar

[16] R.A. Varin, Phys. Status Solidi A, 52, no. 1 (1979) 347.

Google Scholar

[17] II. Novikov, V.K. Portnoi, Materialovedenie i termoobrabotka stalei (Materials Science and Heat Treatment of Steels), Metallurgiya, Moscow,(1975).

Google Scholar

[18] T.G. Langdon, Mater. Sci. Eng. A, 137 (1991) 1.

Google Scholar

[19] T.G. Langdon, Acta Metall. Mater. 42 (1991) 2437.

Google Scholar

[20] H.J. Frost, M.F. Ashby,, Deformation-Mechanism Maps, Pergamon, Oxford, (1982).

Google Scholar

[21] T.G. Karnavskaya, E.V. Avtokratova, V.N. Perevezentsev, et al., in Trudy IV Mezhdunarodnoi konferentsii Deformatsiya i razrushenie materialov i nanomaterialov" (Proc. IV Int. Conf. "Deformation and Destruction of Materials and Nanomaterials,), Moscow, 2011, p.179.

Google Scholar

[22] Yu.D. Vishnyakov, S.A. Vladimirov, P.I Lopukhin, Dokl. Akad. Nauk SSSR, 206, no. 3 (1972) 584.

Google Scholar

[23] D. Wang Min, Cand. Sci. (Eng.) Dissertation, Moscow: National Univ. of Science and Technology MISiS, (2015).

Google Scholar

[24] V.P. Alekhin, V.A. Khonik, Struktura i fizicheskie zakonomernosti deformatsii amorfnykh splavov (Structure and Physical Laws of Deformation of Amorphous Alloys), Metallurgiya, Moscow, (1992).

Google Scholar

[25] V.A. Khonik, V.A. Zelenskii, Fiz. Met. Metalloved. 67, no. 1 (1989) 192.

Google Scholar

[26] F. Faupel, W Frank, M.-P. Macht, et al., Rev. Mod. Phys. 75, no. 1 (2003) 238.

Google Scholar

[27] Yu.S. Nechaev, Izv. Akad. Nauk, Ser. Fiz. 65, no. 10 (2001) 1507.

Google Scholar

[28] I.V. Zolotukhin, Yu.E. Kalinin, Sov. Phys. Usp. 33 (1990) 720.

Google Scholar

[29] E.A. Leonova, S.D. Kaloshkin, I.A. Tomilin, Izv. Akad. Nauk, Ser. Fiz. 65, no. 10 (2001) 1420.

Google Scholar

[30] V.S. Kraposhin, A.L. Talis, Russ. Metall. (Engl. Transl.), 2016, no. 2 (2016) 101.

Google Scholar

[31] Yu.S. Nechaev, D.V. Iourtchenko, J.G. Hirschberg, T.N. Veziroglu, Int. J. Hydrogen Energy, 29 (2004) 1421.

Google Scholar

[32] Yu.S. Nechaev, T.N. Veziroglu, Am. J. Appl. Sci. 2, no. 1 (2005) 469.

Google Scholar

[33] L.V. Spivak, Phys.-Usp. 51 (2008) 863.

Google Scholar

[34] N.E. Skryabina, L.V. Spivak, Izv. Akad. Nauk, Ser. Fiz. 65, no. 10 (2001) 1450.

Google Scholar

[35] V.I. Shapovalov, V.I. Grigorovich, Dokl. Akad. Nauk SSSR, 267, no. 4 (1982) 877.

Google Scholar

[36] V.I. Shapovalov, V.Yu. Karpov, Sov. Mater. Sci. 18, no. 3 (1982) 224.

Google Scholar

[37] V.I. Shapovalov, V.Yu. Karpov, Fiz. Met. Metalloved. 55, no. 4 (1983) 805.

Google Scholar

[38] R.V. Sundeev, A.V. Shalimova, A.M. Glezer, et al., Mater. Sci. Eng. A, 679 (2017) 1.

Google Scholar

[39] M.S. El-Eskandarany, K. Akoi, K. Sumiyama, K. Suzuki, Appl. Phys. Lett. 70 (1997) 1679.

DOI: 10.1063/1.118667

Google Scholar

[40] A.M. Glezer, R.V. Sundeev, A.V. Shalimova, Dokl. Phys. 56 (2011) 476.

Google Scholar

[41] H. Nakayama, K. Tsuchiya, M. Umemoto, Scr. Mater. 44 (2001) 1781.

Google Scholar

[42] Yu.S. Nechaev, Defect Diffus. Forum, 251–252 (2006) 123.

Google Scholar

[43] A.M. Glezer, S.V. Dobatkin, M.R. Plotnikova, A.V. Shalimova, Mater. Sci. Forum, 84–86 (2008) 27.

Google Scholar

[44] A.M. Glezer, M.R. Plotnikova, A.V. Shalimova, S.V. Dobatkin, Bull. Russ. Acad. Sci.: Phys. 73, no. 9 (2009) 1233.

DOI: 10.3103/s1062873809090123

Google Scholar

[45] M. Kawasaki, T.G. Langdon, J. Mater. Sci. 49 (2014) 6487.

Google Scholar