[1]
C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim, Germany, (2003).
Google Scholar
[2]
B. Cantor, P. Grant, H. Assender (Eds.) Aerospace Materials. IOP Publishing, (2001).
Google Scholar
[3]
A.P. Mouritz, Introduction to Aerospace Materials, Woodhead Publishing in Materials, (2012).
Google Scholar
[4]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int. Sci. Publ. (2007).
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[5]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured materials: fundamentals and applications, Wiley, New Jersey (2013).
DOI: 10.1002/9781118742679
Google Scholar
[6]
E.V. Naydenkin, I.V. Ratochka The features of deformation behavior of ultra-fine grained titanium and aluminum alloys under conditions of high strain rate superplasticity, Mater Sci For 584-586 (2008) 159-163.
DOI: 10.4028/www.scientific.net/msf.584-586.159
Google Scholar
[7]
E.V. Naydenkin, I.V. Ratochka , I.P. Mishin, O.N. Lykova, N.V. Varlamova, The effect of interfaces on mechanical and superplastic properties of titanium alloys, Journal of Materials Science, 52(8) (2017) 4164-4171.
DOI: 10.1007/s10853-016-0508-1
Google Scholar
[8]
A.P. Zhilyaev, A.I. Pshenichnyuk Superplasticity and grain boundaries in ultrafine-grained materials, Woodhead Publishing in Materials, (2011).
DOI: 10.1533/9780857093837
Google Scholar
[9]
H. Matsumoto, K. Yoshida, S-H. Lee, Y. Ono, A. Chiba, Ti–6Al–4V alloy with an ultrafine-grained microstructure exhibiting low-temperature–high-strain-rate superplasticity, Mater Let 98 (2013) 209-212.
DOI: 10.1016/j.matlet.2013.02.033
Google Scholar
[10]
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallics and Ceramics, Springer-Verlag, Berlin, (1992).
Google Scholar
[11]
R. Valiev, T. Langdon An investigation of the role of intragranular dislocation strain in the superplastic Pb-62%Sn eutectic alloy, Acta Met Mater 41 (1993) 949-954.
DOI: 10.1016/0956-7151(93)90029-r
Google Scholar
[12]
I.V. Ratochka, O.N. Lykova, A.Yu. Geras'kina, V.A. Skripnyak Investigation of grain boundary sliding under superplastic deformation of titanium alloy VT6, Physical mesomechanics. 12(5) (2009) 97–101.
Google Scholar
[13]
K.V. Ivanov, E.V. Naydenkin Grain boundary sliding in ultrafine grained aluminum under tension at room temperature, Scripta Mat. 66 (2012) 511-514.
DOI: 10.1016/j.scriptamat.2011.12.039
Google Scholar
[14]
A. Arieli, B.J. Maclean, A.K. Mukherjee, The effect of strain and concurrent grain growth on the superplastic behavior of titanium 6Al-4V alloy, Res. Mech. 6(3) (1983) 131–159.
Google Scholar
[15]
K.K. Sankaran, R.S. Mishra, Titanium Alloys in Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier Inc. (2017) 177-288.
DOI: 10.1016/b978-0-12-812068-2.00005-9
Google Scholar
[16]
S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low-temperature superplastic deformation, Acta Materialia 121 (2016) 152-163.
DOI: 10.1016/j.actamat.2016.09.003
Google Scholar
[17]
W. Martienssen, G. Effenberg, S. Ilyenko (Eds.) Ternary alloy systems. Phase diagrams, crystallographic and thermodynamic data, Springer, Berlin-Heidelberg, (2008).
Google Scholar