Low-Temperature Magnetic Hysteresis in Nd(Pr)-Fe-B Nanostructured Alloys with Nd2Fe14B Type Main Phase Composition

Article Preview

Abstract:

Magnetic hysteresis properties of nanostructured industrially manufactured Nd-Fe-B and Pr-Fe-B alloys on the base of a tetragonal Nd2Fe14B (2-14-1) hard magnetic phase (MQP-B, MQP-B+ and MQP-16-7 brands) have been investigated at 4.2 K in magnetic fields up to 58 T. The chemical composition of the alloys given in the certificates was defined more precisely. The grain sizes of the main 2-14-1 phase were determined. The average grain size is much smaller than a critical single domain diameter. Coercivity, remanence magnetization, saturation magnetization and maximal magnetic energy product were determined at 4.2 K and compared with those obtained at room temperature.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Hara, T. Tanaka, H. Kitamura, T. Bizen, X. Maréchal, T. Seike, T. Kohda, Y. Matsura, Cryogenic permanent magnet undulators, Phys. Rev. ST Accel. Beams 7 (2004) 050702.

DOI: 10.1103/physrevstab.7.050702

Google Scholar

[2] J.-C. Huang, H. Kitamura, C.-K. Yang, C.-H. Chang, C.-H. Chang, C.-S. Hwang, Challenges of in-vacuum and cryogenic permanent magnet undulator technologies, Phys. Rev. ST Accel. Beams 20 (2017) 064801.

DOI: 10.1103/physrevaccelbeams.20.064801

Google Scholar

[3] J. F. Herbst, R2Fe14B materials: Intrinsic properties and technological aspects, Rev. Mod. Phys. 63 (1991) 819-898.

Google Scholar

[4] C. Benabderrahmane, P.Berteaud, M.Valle´au, C.Kitegi, K.Tavakoli, N.Be´chu, A.Mary, J.M. Filhol, M.E. Couprie, Nd2Fe14B and Pr2Fe14B magnets characterisation and modelling for cryogenic permanent magnet undulator applications. Nuclear Instruments and Methods in Physics Research A669 (2012).

DOI: 10.1016/j.nima.2011.12.015

Google Scholar

[5] O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient, Advanced Mater. 23 (7) (2011) 821 - 842.

DOI: 10.1002/adma.201002180

Google Scholar

[6] Y. Matsuura Recent development of Nd–Fe–B sintered magnets and their applications, J. Magn. Magn. Mater. 303 (2006) 344-347.

DOI: 10.1016/j.jmmm.2006.01.171

Google Scholar

[7] Y.G. Pastushenkov, N.P. Suponev, T. Dragon, H. Kronmuller, The magnetic domain structure of Fe14Nd2B single crystals between 135 and 4 K and the low-temperature magnetization reversal process in Fe14Nd2B permanent magnets. J. Magn. Magn. Mater. 196 (Suppl. C) (1999).

DOI: 10.1016/s0304-8853(98)00978-0

Google Scholar

[8] S.A. Nikitin, I.S. Tereshina, N.Y. Pankratov, T. Palewski, H. Drulis, M.V. Makarova, Y.G. Pastushenkov, Effect of hydrogen on the magnetic characteristics of Nd2Fe14B single crystal, Phys. Status Solidi (a). 196 (1) (2003) 317 - 320.

DOI: 10.1002/pssa.200306416

Google Scholar

[9] Y.B. Kim, M.J. Kim, H.M. Jin, T.K. Kim, Spin reorientation and magnetocrystalline anisotropy of (Nd1-xPrx)2Fe14B, J. Magn. Magn. Mater. 191 (1999) 133-136.

DOI: 10.1016/s0304-8853(98)00343-6

Google Scholar

[10] G.A. Politova, I.S. Tereshina, D.I. Gorbunov, M.A. Paukov, A.V. Andreev, R.M. Grechishkin, K. Rogacki, Magnetic and magnetocaloric properties of single crystal (Nd0.5Pr0.5)2Fe14B, J. Alloys Compd. 751 (2018) 283-288.

DOI: 10.1016/j.jallcom.2018.04.120

Google Scholar

[11] D.N. Brown, D. Lau, and Z. Chen, Substitution of Nd with Other Rare Earth Elements in Melt Spun Nd2Fe14B Magnets, AIP Adv. 6(5) (2016) 056019.

DOI: 10.1063/1.4944080

Google Scholar

[12] I.S. Tereshina, N.V. Kudrevatykh, L.A. Ivanov, G.A. Politova, E.A. Tereshina, D. Gorbunov, M. Doerr, K. Rogacki, Magnetic Properties of the Nanocrystalline Nd-Ho-Fe-Co-B Alloy at Low Temperatures: The Influence of Time and Annealing, J. of Materi Eng and Perform. 26(10) (2017).

DOI: 10.1007/s11665-017-2952-8

Google Scholar

[13] N.V. Kudrevatykh, S.A. Andreev, M.I. Bartashevich, A.N. Bogatkin, O.A. Milyaev, P.E. Markin, I.S. Tereshina, T. Palewski, E.A. Tereshina, Magnetization of Y2(Fe1-xCox)B14 intermetallic compound and their hydrides, J. Magn.Magn.Mater. 300(1) (2006).

DOI: 10.1016/j.jmmm.2005.10.189

Google Scholar

[14] I.S. Tereshina, A.V. Andreev, H. Drulis, E.A. Tereshina, Effect of hydrogen on magnetic properties of Lu2Fe14B single crystal, J. Alloys Comp. 404-406 (2005) 212-215.

DOI: 10.1016/j.jallcom.2005.03.093

Google Scholar

[15] Z.-D. Zhang, Y.-K. Huang, X.-K. Sun, Y.-C. Chuang, F.-M. Yang, F.R. de Boer, R.J. Radwanski, High-field magnetization of Pr2Fe14B-based compounds, Physica B 155 (1989) 269-272.

DOI: 10.1016/0921-4526(89)90510-3

Google Scholar

[16] L.H. Lewis, V. Panchanathan, J.-Y. Wang, Technical magnetic properties of melt-spun (Nd1-xPrx)2Fe14B at low temperature, J. Magn. Magn. Mater. 176 (1997) 288-296.

DOI: 10.1016/s0304-8853(97)00648-3

Google Scholar

[17] I.S. Tereshina, I.A. Pelevin, E.A. Tereshina, G.S. Burkhanov, K. Rogacki, M. Miller, N.V. Kudrevatykh, P.E. Markin, A.S. Volegov, R.M. Grechishkin, S.V. Dobatkin, L. Schultz, Magnetic hysteresis properties of nanocrystalline (Nd,Ho)-(Fe,Co)-B alloy after melt spinning, severe plastic deformation and subsequent heat treatment, J. Alloys Compd. 681 (2016).

DOI: 10.1016/j.jallcom.2016.04.228

Google Scholar

[18] E.A. Tereshina, H. Drulis, Y. Skourski, I. Tereshina, Strong room-temperature easy-axis anisotropy in Tb2Fe17H3: An exception among R2Fe17 hydrides. Phys. Rev. B. 87 (2013) 214425(5).

Google Scholar

[19] W.-y. Zhang, S.-y. Zhang, A.-r. Yan, H.-w. Zhang, and B.-g. Shen, Effect of the Substituion of Pr for Nd on Microstructure and Magnetic Properties of Nanocomposite Nd2Fe14B/a-Fe Magnets, J. Magn. Magn. Mater. 225(3) (2001) 389-393.

DOI: 10.1016/s0304-8853(01)00015-4

Google Scholar

[20] R.W. Gao, W.C. Feng, H.Q. Liu, B. Wang, W. Chen, G.B. Han, P. Zhang, H. Li, Y.Q. Gu, W. Pan, X.M. Li, M.G. Zhu, X. Li, Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials, Journal of applied physics. 94 (2003).

DOI: 10.1063/1.1581380

Google Scholar

[21] F. Song, X. Shen, M. Liu, J. Xiang, Microstructure, magnetic properties and exchange-coupling interactions for one-dimensional hard/soft ferrite nanofibers, J. Sol. State Chem. 185 (2012) 31-36.

DOI: 10.1016/j.jssc.2011.10.009

Google Scholar

[22] A.S. Bolyachkin, A.S. Volegov, N.V. Kudrevatykh, Intergrain exchange interaction estimation from the remanence magnetization analysis, J. Magn. Magn. Mater. 378 (2015) 362-366.

DOI: 10.1016/j.jmmm.2014.11.064

Google Scholar

[23] R. Skomski, J.M.D. Coey, Giant energy product in nanostructured two-phase magnets, Physical Review B. 48(21) (1993) 15812.

DOI: 10.1103/physrevb.48.15812

Google Scholar

[24] A.S. Volegov, A.S. Bolyachkin, N.V. Kudrevatykh, A New Method of Intergrain Exchange Interaction Energy Determination in Nanostructured Alloys with Spontaneous Spin-Reorientation Transition, Solid State Phenomena. 233 (2015) 615-618.

DOI: 10.4028/www.scientific.net/ssp.233-234.615

Google Scholar

[25] N.V. Kudrevatykh, A.S. Volegov, A.V. Glebov, S.V. Andreev, V.G. Pushin, P.E. Markin, D.S. Neznakhin, Microstructure and Magnetic Hysteresis in Nanocrystalline Nd-Fe-Co-B Alloys on the Base of Nd2Fe14B Phase, Solid State Phenomena. 168-169 (2011).

DOI: 10.4028/www.scientific.net/ssp.168-169.420

Google Scholar

[26] P. Scherrer, Göttinger Nachrichten Gesell. 2 (1918) 98.

Google Scholar

[27] H. Kronmüller, General micromagnetic theory, in: H. Kronmüller, S.Parkin (Eds.), Handbook of Magnetism and Advanced Magnetic Materials (2007) 18.

DOI: 10.1002/9780470022184.hmm201

Google Scholar

[28] M. Yamada, H. Kato, H. Yamamoto, Y. Nakagawa, Crystal-field analysis of the magnetization process in a series of Nd2Fe14B-type compounds, Physical Review B. 38 (1988) 620.

Google Scholar