The Electrolyte Concentration Influence on the Features of Formation Process and Morphology of the PEO-Coatings on Aluminum Alloy

Article Preview

Abstract:

Plasma electrolytic oxidation (PEO) of aluminum alloy 5754 was carried out in a multicomponent electrolyte variating the concentration of sodium silicate. The research has allowed to establish the characteristic features of the plasma electrolytic oxidation process, and also morphological structure of the formed oxide layers. It is established that the applied electrolytic systems can significantly increase the thickness of the formed layers (up to 152 μm), and control their porosity, bringing it up to 30 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-314

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surf. Coat. Technol. 226 (2013) 100–107.

DOI: 10.1016/j.surfcoat.2013.03.041

Google Scholar

[2] V.S. Egorkin, S.V. Gnedenkov, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Gnedenkov, R.G. Chizhikov, Increasing thickness and protective properties of PEO-coatings on aluminum alloy, Surf. Coat. Technol. 334 (2018) 29–42.

DOI: 10.1016/j.surfcoat.2017.11.025

Google Scholar

[3] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte, Russian Journal of Applied Chemistry. 83 (2010) 664–670.

DOI: 10.1134/s1070427210040178

Google Scholar

[4] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A.Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti Compositions by Plasma Electrolytic Oxidation of Titanium and Investigating Their Properties, Protection of Metals and Physical Chemistry of Surfaces. 47 (2011).

DOI: 10.1134/s2070205111050145

Google Scholar

[5] S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz', A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma electrolytic oxidation coatings formed with microsecond current pulses, Solid State Phenomena 213 (2014) 149–153.

DOI: 10.4028/www.scientific.net/ssp.213.149

Google Scholar

[6] A.E.R. Friedemann, Th.M. Gesing, P. Plagemann, Electrochemical rutile and anatase formation on PEO surfaces, Surf. Coat. Technol. 315 (2017) 139–149.

DOI: 10.1016/j.surfcoat.2017.01.042

Google Scholar

[7] K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, M. Sandhyarani, AC. Bose, V. Muthupandi, S. Subramanian, Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, Electrochim. Acta 105 (2013).

DOI: 10.1016/j.ceramint.2012.07.001

Google Scholar

[8] W. Gębarowski, S. Pietrzyk, Growth Characteristics of the Oxide Layer on Aluminium in the Process of Plasma Electrolytic Oxidation, Archives of Metallurgy and Materials 59 (2014) 407–411.

DOI: 10.2478/amm-2014-0070

Google Scholar

[9] L. Chuang, X. Faqin, C. Jian, L. Chuang, Z. Liping, Characterization of Micro-arc Oxidation of ZL109 Cast Al-Si Alloy, Machinery, Materials Science and Energy Engineering (ICMMSEE 2015), WORLD SCIENTIFIC, Wuhan, Hubei Province of China, 2015, p.417.

DOI: 10.1142/9789814719391_0050

Google Scholar

[10] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González, Energy-efficient PEO process of aluminium alloys, Mater. Lett. 127 (2014) 13–16.

DOI: 10.1016/j.matlet.2014.04.077

Google Scholar

[11] Y. Zhang, Y. Wu, D. Chen, R. Wang, D. Li, C. Guo, G. Jiang, D. Shen, S. Yu, P. Nash, Micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current densities, Surf. Coat. Technol. 321 (2017).

DOI: 10.1016/j.surfcoat.2017.04.064

Google Scholar

[12] R. Aliramezani, K. Raeissi, M. Santamaria, A. Hakimizad, Characterization and properties of PEO coatings on 7075 Al alloy grown in alkaline silicate electrolyte containing KMnO4 additive, Surf. Coat. Technol. 329 (2017) 250–261.

DOI: 10.1016/j.surfcoat.2017.09.056

Google Scholar

[13] R.-Q. Wang, Y.-K. Wu, G.-R. Wu, D. Chen, D.-L. He, D. Li, C. Guo, Y. Zhou, D. Shen, P. Nash, An investigation about the evolution of microstructure and composition difference between two interfaces of plasma electrolytic oxidation coatings on Al, J. Alloy. Compd. 753 (2018).

DOI: 10.1016/j.jallcom.2018.04.077

Google Scholar

[14] M. Mohedano, M. Serdechnova, M. Starykevich, S. Karpushenkov, A.C. Bouali, M.G.S. Ferreira, M.L. Zheludkevich, Active protective PEO coatings on AA2024: Role of voltage on in-situ LDH growth, Mater. Design 120 (2017) 36–46.

DOI: 10.1016/j.matdes.2017.01.097

Google Scholar

[15] W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, G.-L. Zhang, S.-Z. Yang, Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH, Journal of Materials Processing Technology 182 (2007).

DOI: 10.1016/j.jmatprotec.2006.07.002

Google Scholar

[16] M. Vakili-Azghandi, A. Fattah-alhosseini, M.K. Keshavarz, Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: Response surface methodology, Measurement 124 (2018) 252–259.

DOI: 10.1016/j.measurement.2018.04.038

Google Scholar

[17] S. Ono, S. Moronuki, Y. Mori, A. Koshi, J. Liao, H. Asoh, Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation, Electrochim. Acta. 240 (2017).

DOI: 10.1016/j.electacta.2017.04.110

Google Scholar