Facile Synthesis of α- Fe2O3/Carbon Core-Shell Composite for Lithium Storage and Conversion

Article Preview

Abstract:

Carbon-coated hematite α-Fe2O3 core-shell structure had been synthesized by a facile method of pulsed high-voltage discharge. The structure, morphology, and phase composition of the material were characterized by SEM, TEM, and XRD methods. When carbon-coated α-Fe2O3 was galvanostatically cycled at 100 mA g–1 in the voltage range of 3.0–0.005 V, it exhibits a reversible capacity of 479 mAh g1, assuming about three Li+ ions retrieval.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-304

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Bresser, E. Paillard, S. Passerini, Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: emerging cell materials and components, in: C. Menictas, M. Skyllas-Kazacos, T.M. Lim. (Eds.), Advances in Batteries for Medium and Large-Scale Energy Storage, Woodhead Publishing, Sawston, Cambridge, 2015, p.213.

DOI: 10.1016/b978-1-78242-013-2.00007-8

Google Scholar

[2] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources 257 (2014) 421–443.

DOI: 10.1016/j.jpowsour.2013.11.103

Google Scholar

[3] A.B. Yaroslavtsev, T.L. Kulova, A.M. Skundin, Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev. 84 (2015) 826–852.

DOI: 10.1070/rcr4497

Google Scholar

[4] Y.-H. Sun, S. Liu, F.-C. Zhou, J.-M. Nan, Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3/carbon anodes for lithium-ion batteries, Appl. Surf. Sci. 390 (2016) 175–184.

DOI: 10.1016/j.apsusc.2016.08.071

Google Scholar

[5] N.K. Chaudhari, M.-S. Kim, T.-S. Bae, J.-S. Yu, Hematite (α-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery, Electrochem. Acta 114 (2013) 60–67.

DOI: 10.1016/j.electacta.2013.09.169

Google Scholar

[6] Y. Zeng, W. Zhang, C. Xu, N. Xiao, Y. Huang, D.Y.W. Yu, H.H. Hng, Q. Yan, One‐step solvothermal synthesis of single‐crystalline TiOF2 nanotubes with high lithium‐ion battery performance, Chem. Eur. J. 18 (2012) 4026–4030.

DOI: 10.1002/chem.201103879

Google Scholar

[7] P.E. Meskin, D.R. Afanas'ev, A.I. Gavrilov, B.R. Churagulov, N.N. Oleinikov, A.E. Baranchikov, V.K. Ivanov, Ultrasonically activated hydrothermal synthesis of fine TiO2 and ZrO2 powders, Inorg. Mater. 40 (2004) 1058–1065.

DOI: 10.1023/b:inma.0000046468.73127.f5

Google Scholar

[8] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, V.G. Kuryavyi, А.Yu. Ustinov, V.I. Sergienko, Structural and electrochemical investigation of nanostructured C:TiO2–TiOF2 composite synthesized in plasma by an original method of pulsed high-voltage discharge, J. Alloy. Compd. 621 (2015).

DOI: 10.1016/j.jallcom.2014.10.023

Google Scholar