Heat Treatments Effects on NickeI-Based Superalloy Inconel 713C

Abstract:

Article Preview

The purpose of this work is to study the effect of heat treatments on the microstructure of the nickel-based superalloy Inconel 713C. Three different conditions were studied and the results compared: (1) as cast; (2) solution treatment (1,179°C/2h) and (3) stabilizing treatment (1,179°C/2h plus 926°C/16h). Inconel 713C is normally used in the as-cast condition, an improvement in the 980°C stress-rupture life is often obtained by a solution heat treatment. However, the material in this condition tested under high stress at 730°C shows a marked decreased in rupture life and ductility [1]. The mechanical resistance in creep increases in Inconel 713C by precipitation hardening phase, such γ’ (Ni3Al) formed during the heat treatments [2]. The characterization techniques used was: chemical analysis, hardness test, X-ray diffraction, optical microscope and scanning electron microscopy (SEM), EDS analyzes and thermocalculation. The heat treatments modified the dendritic structure, reducing the acicularity. The SEM and EDS analysis illustrated the γ, γ’ and carbides. The matrix phase (γ), has in its constitution the precipitation of the γ’ phase, in a cubic form, and in some regions, veins of carbides were modified with the heat treatments.

Info:

Periodical:

Edited by:

Antonio F Miguel, Luiz Rocha and Prof. Andreas Öchsner

Pages:

32-40

Citation:

B. B. Galizoni et al., "Heat Treatments Effects on NickeI-Based Superalloy Inconel 713C", Defect and Diffusion Forum, Vol. 390, pp. 32-40, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] Aeromagazine. Novos aviões, motores e combustíveis. Disponível em: . Acesso em: 30 nov. (2016).

[2] Backman, D.G.; Williams, J.C. Advanced materials for aircraft engine applications. Science, New Series: American Association for the Advancement of Science, vol. 255, n°. 5048, 1082-1087, (1992).

DOI: https://doi.org/10.1126/science.255.5048.1082

[3] Reis, A. G. ; Reis, D. A. P ; Moura Neto, C. ; Barboza, M. J. R. ; Onoro, J. . Creep behavior and surface characterization of a laser surface nitrided Ti-6Al-4V alloy. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, v. 577, 48-53, (2013).

DOI: https://doi.org/10.1016/j.msea.2013.04.042

[4] Sugahara, T.; Martinolli, K.; Reis, D.A.P.; Moura Neto, C.; Couto, A. A.; Neto, F. P.; Barboza, M.J.R. Creep Behavior of the Inconel 718 Superalloy. Defect and Diffusion Forum, v. 326-328, 509-514, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.326-328.509

[5] Martinolli, K.; Sugahara, T.; Reis, D.A.P.; Moura Neto, C.; Hirschmann, A. C.; Couto, A. A. . Evaluation of Inconel 718 Creep Behavior. Defect and Diffusion Forum, v. 326-328, 525-529, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.326-328.525

[6] Reis, D.A.P; Moura Neto, C.; Oliveira, A.C.C.; Couto, A.A. ; Domingues, N.I. ; Sepka, S. Effect of Artificial Aging on the Mechanical Properties of an Aerospace. Diffusion and Defect Data, Solid State Data. Part A, Defect and Diffusion Forum, v. 326, 193-198, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.326-328.193

[7] Martinolli, K.; Moura Neto, C.; Oliveira, A.C.C.; REIS, D.A.P.; Couto, A.A.; Sugahara, T. Evaluation of Inconel 718 Creep Behavior. Diffusion and Defect Data, Solid State Data. Part A, Defect and Diffusion Forum, v. 326, 525-529, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.326-328.525

[8] Reis, A. G.; Reis, D. A. P; Moura Neto, C.; Barboza, M.J.R.; Silva, C.R.M.; Piorino Neto, F.; Onoro, J. Influence of Laser Treatment on the Creep of the Ti-6Al-4V Alloy. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, v. 42, 3031-3034, (2011).

DOI: https://doi.org/10.1007/s11661-011-0834-5

[9] Reis, D.A.P; Moura Neto, C.; Silva, C.R.M. ; Barboza, M.J.R.; Piorino Neto, F. Effect of coating on the creep behavior of the Ti-6Al-4V alloy.. Materials Science & Engineering. A, Structural Materials: properties, microstructure and processing, v. 486, 421-426, (2008).

DOI: https://doi.org/10.1016/j.msea.2007.09.024

[10] Barboza, M.J.R.; Perez, E.A.C.; Medeiros, M.M.; Reis, D.A.P.; Nono, M.C.A.; Piorino, F.; Silva, C.R.M. Creep behavior of the Ti-6Al-4V and a comparison with titanium matrix composites.. Materials Science & Engineering. A, Structural Materials: properties, microstructure and processing, Inglaterra, v. 428, n.1-2, 319-326, (2006).

DOI: https://doi.org/10.1016/j.msea.2006.05.089

[11] Reis, D.A.P.; Silva, C.R.M.; Nono, M.C.A.; Barboza, M.J.R.; Piorino, F.; Perez, E.A.C. Effect of environment on the creep behavior of the Ti-6Al-4V alloy. Materials Science & Engineering. A, Structural Materials: properties, microstructure and processing, v. 399, 276-280, (2005).

DOI: https://doi.org/10.1016/j.msea.2005.03.073

[12] Kracke, A. Superalloys, the most successful alloy system of modern times – past, present and future. 7th International Symposium on Superalloy 718 and Derivatives. TMS (The Minerals, Metals & Materials Society), (2010).

DOI: https://doi.org/10.7449/2010/superalloys_2010_13_50

[13] Muktinutalapati, N. R. A. Materials for gas turbines – an overview. Advances in gas turbine technology, (2011).

[14] Meyer, M.A.; Chawla, K. K. Princípios de metalurgia mecânica. São Paulo: Edgard Blüncher, cap. 14, pp.406-420, (1982).

[15] Azevedo, C. R. F.; Moreira, M.F.; Hippert, E. Nickel Superalloy (INCONEL 713C). Publicação IPT 2767, Instituto de Pesquisas Tecnológicas, São Paulo, (2001).

[16] Pratt and Whitney Aircraft. Engineering Properties of Alloy 713C. Material Engineering Section, (1965).

[17] SAE INTERNATIONAL. AMS 5391: Nickel Alloy, Corrosion and Heat-Resistant, Investment Castings 73Ni - 0.14C - 4.5Mo - 2.3Cb (Nb) - 0.75Ti - 6.0Al - 0.010B - 0.12Zr Vacuum Cast, As-Cast. Abr. 2014. 9 páginas.

DOI: https://doi.org/10.4271/ams5391

[18] DATA BASE : Thermo-Calc Software TTNI8/Ni-based superalloys database version 8, http://www.thermocalc.com. Accessed 18 May (2018).

[19] Farina, A. Metalografia das Ligas e Superligas de Níquel, Technical Report Villares Metals, Brasil, (2000).

[20] Kunz, L.; Lukáš, P.; Konečná, R. High-cycle fatigue of Ni-base superalloy 713C. International Journal of Fatigue. vol. 32, pp.908-913, (2010).

DOI: https://doi.org/10.1016/j.ijfatigue.2009.02.042

[21] Reed, R.C. The Superalloys: Fundamentals and Applications. Cambridge, Cambridge University Press, pp.33-114, (2006).

[22] Nalawade, S.A.; Sundararaman, M.; SINGH,J. B.; VERMA, A.; KISHORE, R. Precipitation of γ' phase in δ-precipitated Alloy 718 during deformation at elevated temperatures. Materials Science and Engineering A, vol. 527, pp.2906-2909, (2010).

DOI: https://doi.org/10.1016/j.msea.2010.01.006

[23] Valle, L. C. M. Efeitos da solubilização e do envelhecimento na microestrutura e nas propriedades mecânicas da superliga Inconel 718. 2010. 97p. Dissertação (Mestrado em Engenharia Metalúrgica e de Materiais) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp.13-22, (2010).

DOI: https://doi.org/10.1590/1807-01912016223524

[24] Ezugwu, E. O.; Wang, Z. M.; Machado, A. R. The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology, v.86, pp.1-16, (1999).

[25] Decker, R. F. The evolution of wrought age-hardenable superalloys - nickel: a century of innovation – overview, JOM, pp.32-36, (2006).

DOI: https://doi.org/10.1007/s11837-006-0079-8