A New Thermal Model in SAE-AISI 1524 Friction Stir Welding

Article Preview

Abstract:

Several important key problems and issues remain to be addressed about the numerical analysis of friction stir welding. The main feature of the thermal numerical approach is to accurately compute the thermal distribution produced by the friction between the plate and the tool. It is well known that the downward force applied from the tool creates a distributed pressure between the shoulder and the workpiece. Based on this, a new expression to represent the heat generation in FSW is proposed. Results of thermal cycles, thermal histories, and shapes of the weld and HAZ obtained with the proposed expression in SAE-AISI 1524 carbon steel are presented. Results demonstrate that the energy input is strongly dependent on the tool advance speed, rotational speed, and the axial pressure necessary to produce yielding. For instance, at a constant increase in axial pressure, lower peak temperature increments are produced when higher tool advance speeds are chosen. The mathematical modeling has been investigated with a view to generate numerical data to provide values for further assessment and experimental comparison.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-63

Citation:

Online since:

January 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Xiaocong, G. Fengshou, B. Andrew, Progress in Materials Science. 65 (2014) 1–66.

Google Scholar

[2] R. Mishra, Z. Ma, Friction stir welding and processing, Mater. Sci. Eng. R50 (2005) 1–78.

Google Scholar

[3] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding – process, weldment structure and properties, Prog Mater Sci. 53 (2008) 980–1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[4] P. Threadgilll, A. Leonard, H. Shercliff, P.J. Withers, Friction stir welding of aluminum alloys, Int Mater Rev. 54 (2009) 49–93.

Google Scholar

[5] G. Çam, Friction stir welded structural materials: beyond Al-alloys, Int Mater Rev. 56 (2011) 1–48.

DOI: 10.1179/095066010x12777205875750

Google Scholar

[6] S. Guerdoux, L. Fourment, A 3D numerical simulation of different phases of friction stir welding, Modelling Simul. Mater. Sci. Eng. 17 (2009) 075001 (32pp).

DOI: 10.1088/0965-0393/17/7/075001

Google Scholar

[7] M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation: Calibrations from welding experiments, International Journal of Machine Tools & Manufacture 50 (2010) 143–155.

DOI: 10.1016/j.ijmachtools.2009.11.008

Google Scholar

[8] C. Hamiltona, S. Dymekb, A. Sommersa, A thermal model of friction stir welding in aluminum alloys, International Journal of Machine Tools & Manufacture 48 (2008) 1120–1130.

DOI: 10.1016/j.ijmachtools.2008.02.001

Google Scholar

[9] Z. Feng, X. Li Wang, S. David, P. Sklad, Modeling of Residual Stresses and property distributions in friction stir welds of aluminum alloy 6061-T6. Oak Ridge National Laboratory, Oak Ridge, 37831.

DOI: 10.1179/174329307x197610

Google Scholar

[10] O. Frigaard, O. Grong, J. Hjelen Gulbrandsen-Dahl, O. Midling, Characterization of the subgrain in friction stir welded aluminium alloys using the SEM–EBSD technique, Proceeding 1st International Symposiuom in Friction Stir Welding, The welding institute, Thousand Oaks, CA (1999).

DOI: 10.4028/www.scientific.net/msf.426-432.2861

Google Scholar

[11] H. Schmidt, T. Dickerson, J. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Mater. 54 (2006) 1199–1209.

DOI: 10.1016/j.actamat.2005.10.052

Google Scholar

[12] A. Gerlich, M. Yamamoto, T. North, Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds, Metall. Mater. Trans. A 38 (6) (2007) 1291–1302.

DOI: 10.1007/s11661-007-9155-0

Google Scholar

[13] M. Guerra, C. Schmidt, J. McClure, L. Murr, A. Nunes, Flow patterns during friction stir welding, Mater. Charact. 49 (2002) 95–101.

DOI: 10.1016/s1044-5803(02)00362-5

Google Scholar

[14] P. Ulysse,Three-dimensional modeling of the friction stir-welding, Process Int. J. Mach. Tools. Manuf. 42 (2002) 1549–1557.

DOI: 10.1016/s0890-6955(02)00114-1

Google Scholar

[15] P. Colgrove, H. Shercliff, 3-Dimensional CFD modeling of flow round a threaded friction stir welding tool profile, J. Mater. Proc. Technol. 169 (2005) 320–327.

DOI: 10.1016/j.jmatprotec.2005.03.015

Google Scholar

[16] K. Jata, M. Mahoney, R. Mishra, S. Semiatin, D. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, PA (2001) 43–54.

Google Scholar

[17] J. Lienert, W. Stellwag, B. Grimmett, R. Warke, Friction Stir Welding Studies on Mild Steel, Welding Journal 82(1) (2003) 1s-9s.

Google Scholar

[18] D. Failla II, Friction Stir Welding and Microstructure Simulation of HSLA-65 and Austenitic Stainless Steels, Welding Engineering MS Thesis at the Ohio State University, (2009).

Google Scholar

[19] R. Nandan, B. Prabu, A. De, T. Debroy, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys, Welding Journal. 86 (2007) 313-s, 322-s.

DOI: 10.1201/9781315116815-4

Google Scholar

[20] ABAQUS 6.14.2. Finite Element Software, 2014. Simulia ABAQUS®, Inc.

Google Scholar

[21] M. Mehta, K. Chatterjee, A. De, Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors, Science and Technology of Welding and Joining. 18 (3) (2013) 191-197.

DOI: 10.1179/1362171812y.0000000084

Google Scholar

[22] R. Nandan, G. Roy, T. Lienert, T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia 55 (2007) 883-895.

DOI: 10.1016/j.actamat.2006.09.009

Google Scholar

[23] G. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, Sec. 18-6 (1986) 483-484.

Google Scholar

[24] SYSWELD-Visual Weld material data base. Material Database Manager, (2011).

Google Scholar

[25] J. Hatel, Thermomechanical Modelling of Friction Stir Welding, Trends in Welding Research Proceedings of the 8th International Conference, S. David, T. DebRoy, J. DuPont, T. Koseki, H. Smartt, Editors (2009) 1-10.

Google Scholar

[26] E. A. Bonifaz, Finite Element Analysis of Heat Flow in Single-Pass Arc Welds, Welding Journal. 79 (5) (200) 121-s – 125-s.

Google Scholar