Measurement of the Thermal Properties of Innovative Highly-Insulating Non-Structural Concretes

Article Preview

Abstract:

Thermal characteristic of insulation concretes is one of the key components in materials selection especially in civil constructions. In this article, non–tabulated material parameters of some innovative highly-insulating non-structural concretes are presented. The specific volumetric heat capacity, specific heat capacity, parameter of temperature diffusivity and thermal mass parameter of the innovative highly-insulating cementitious composites were determined. The experiments were conducted using a prototype automated calorimetric chamber. The measurement results are compared with those obtained by using a commercial multifunctional instrument (Isomet 2114) and are accompanied by the measurement of other significant thermal parameters of the cementitious composites under investigation. The results indicated that there is potential of using the newly created types of concrete for insulation purposes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-52

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Ziman, Transport properties. In Principles of the theory of solids, 2nd ed., Univ. Press, Cambridge, (1972).

Google Scholar

[2] Y.W. Jeong, T.H. Koh, K.S. Youm, J. Moon, Experimental Evaluation of Thermal Performance and Durability of Thermally-Enhanced Concretes, Appl. Sci. 8 (2017) 811.

DOI: 10.3390/app7080811

Google Scholar

[3] B. Ma, X. Zhou, J. Liu, Z. You, K. Wei, X. Huang, Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange Systém, Materials 9 (2016) 389.

DOI: 10.3390/ma9050389

Google Scholar

[4] M. Safiuddin, S.N. Raman, M.F.M. Zain, Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete, Materials 8 (2015) 8608-8623.

DOI: 10.3390/ma8125464

Google Scholar

[5] J. Toman, R. Černý, Calorimetry of building materials, J Therm Anal Calorim, 43 (1995) 489-496.

Google Scholar

[6] R. Černý, E. Vejmelková, Apparent thermal conductivity approach at high-temperature measurements of porous materials, Measurement 44 (2011) 1220-1228.

DOI: 10.1016/j.measurement.2011.04.002

Google Scholar

[7] K. Großmann, M. Mischke, A non-steady-state probe measurement method to determine heat conductivity, heat capacity as well as moisture in solids and bulk materials, Measurement, 14 (1995) 191-197.

DOI: 10.1016/0263-2241(94)00010-5

Google Scholar

[8] VŠB-TU Ostrava. The device for identifying the physical properties of solid materials. Inventors: M. Kušnerová, J. Valíček, V. Václavík, J. Daxner, Prague: Industrial Property Office ČR: UV 23861, U1, G01N 25/18 (2006.01), G01N 27/18 (2006.01), Owner: VŠB-TUO, Ostrava, CZ and D&DAXNER Technology, s.r.o, Ostrava, CZ, (2012).

Google Scholar

[9] VŠB-TU Ostrava. Equipment for the identification of physical properties of solid materials. Inventors: Kušnerová, M., Valíček, J., Václavík, V., Daxner, J. Utility model CZ 23861 U1. 24. 05. 2012, Czech Republic, (2012).

Google Scholar

[10] L. Gola, V. Václavík, J. Valíček, M. Harničárová, M. Kušnerová, T. Dvorský, Drainage concrete based on cement composite and industrial waste, in: A. Öchsner, L. da Silva, H. Altenbach (Eds.), Advanced Structures materials, Springer Singapore, 2015, pp.155-165.

DOI: 10.1007/978-3-319-19443-1_12

Google Scholar

[11] M. Kušnerová, J. Valíček, M. Harničárová, Measurement of physical properties of polyurethane plaster, Gradevinar 66 (2017) 899-907.

Google Scholar

[12] M. Kušnerová, L. Gola, J. Valíček, V. Václavík, M. Harničárová, I. Pandová, P. Koštial, Comparative measurements of the thermal properties of solid materials on a new device and using a new non-stationary method, Def Diff Forum 366 (2016).

DOI: 10.4028/www.scientific.net/ddf.366.63

Google Scholar

[13] M. Kušnerová, J. Valíček, M. Harničárová, T. Hryniewicz, K. Rokosz, Z. Palková, V. Václavík, M. Řepka, M. Bendová, A Proposal for Simplifying the Method of Evaluation of Uncertainties in Measurement Results, 2013 Meas. Sci. Rev. 13 (2013) 1-6.

DOI: 10.2478/msr-2013-0007

Google Scholar

[14] Metrology, W.G. 1. o. J. C. f. G. i., 2008. GUM: Evaluation of measurement data--Guide to the expression of uncertainty in measurement, Paris: BIPM.

Google Scholar