Peristaltic Flow of a Jeffery Fluid with Heat Transfer in an Inclined Porous Tube under the Influence of Slip and Variable Viscosity

Article Preview

Abstract:

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-30

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. W. Latham, Fluid motion in a peristaltic pump, MS thesis, Massachusetts Institute of Technology, Cambridge, USA, (1966).

Google Scholar

[2] A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, S. L, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics, 37 (1969) 799-825.

DOI: 10.1017/s0022112069000899

Google Scholar

[3] C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Divya, Hanumesh Vaidya, Peristaltic transport of two-layered blood flow using Herschel-Bulkley model, Cogent Engineering, 5 (2018) 1495592.

DOI: 10.1080/23311916.2018.1495592

Google Scholar

[4] T. Hayat, N. Ali, S. Asghar, An analysis of peristaltic transport for flow of a Jeffrey fluid, Acta Mechanica, 193 (2007) 101-112.

DOI: 10.1007/s00707-007-0468-2

Google Scholar

[5] S. Srinivas, R. Muthuraj, Peristaltic transport of Jeffery fluid under the effect of slip in an inclined asymmetric channel, International Journal of Applied Mechanics, 2 (2010) 437-455.

DOI: 10.1142/s1758825110000573

Google Scholar

[6] C. K. Selvi, C. Haseena, A. N. S. Srinivas, S. Sreenadh, The effect of heat transfer on peristaltic flow of Jeffery fluid in an inclined porous medium, IOP Conf. Series. Materials Science and Engineering, 263 (2017) 062027.

DOI: 10.1088/1757-899x/263/6/062027

Google Scholar

[7] S. Sreenadh, K. V. Prasad, H. Vaidya, E. Sudhakar, G. G. Krishna, M. Krinshnamurty, MHD Couette Flow of a Jeffrey Fluid over a Deformable Porous Layer, International Journal of Applied and Computational Mathematics, 3 (2017) 2125-2138.

DOI: 10.1007/s40819-016-0232-1

Google Scholar

[8] A. Tanveer, T. Hayat, A. Alsaedi, Peristaltic flow of MHD Jeffery nanofluid in a curved channel with convective boundary conditions: a numerical study, Neural Computing and Applications, 30 (2018) 437-446.

DOI: 10.1007/s00521-016-2705-x

Google Scholar

[9] E. F. Elshehawey, K. Mekheimer, S. Kaldas, N. Afifi, Peristaltic transport through a porous medium, Journal of Biomathematics, 14 (1999) 1.

Google Scholar

[10] E. F. Elshehawey, S. Z. A. Husseny, Effects of porous boundaries on peristaltic transport through a porous medium, Acta Mechanica, 143 (2000) 165–177.

DOI: 10.1007/bf01170946

Google Scholar

[11] S. Nadeem, S. Akram, Peristaltic flow of a Maxwell model through porous boundaries in a porous medium, Transport in Porous Media, 86 (2011) 895-900.

DOI: 10.1007/s11242-010-9663-z

Google Scholar

[12] A. Alsaedi, N. Ali, D. Tripathi, T. Hayat, Peristaltic flow of couple stress fluid through uniform porous medium, Applied Mathematics and Mechanics, 35 (2014) 469-480.

DOI: 10.1007/s10483-014-1805-8

Google Scholar

[13] G. Manjunatha, C. Rajashekhar, Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43 (2018) 67-80.

DOI: 10.2478/ijame-2019-0020

Google Scholar

[14] C. Rajashekhar, G. Manjunatha, Hanumesh Vaidya, K. V. Prasad, Peristaltic flow of Herschel-Bulkley fluid in an elastic tube with slip at porous walls, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52 (2018) 63-75.

DOI: 10.37934/arfmts.102.2.166185

Google Scholar

[15] G. Radhakrishnamacharya, C. Srinivasulu, Influence of wall properties on peristaltic transport with heat transfer, Comptes Rendus Mecanique, 335 (2007) 369-373.

DOI: 10.1016/j.crme.2007.05.002

Google Scholar

[16] S. Srinivas, M. Kothandapani, Peristaltic transport in an asymmetric channel with heat transfer a note, International Communications in Heat and Mass Transfer, 35 (2008) 514-522.

DOI: 10.1016/j.icheatmasstransfer.2007.08.011

Google Scholar

[17] S. Nadeem, N. S. Akbar, Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a non-uniform inclined tube, Communication in Nonlinear Science and Numerical Simulation, 14 (2009) 4100-4113.

DOI: 10.1016/j.cnsns.2009.02.032

Google Scholar

[18] A. Sinha, G. C. Shit, N. K. Ranjit, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel, Effects of variable viscosity, velocity slip and temperature, Alexandria Engineering Journal, 54 (2015) 691-704.

DOI: 10.1016/j.aej.2015.03.030

Google Scholar

[19] M. G. Reddy, B. C. Prasannakumara, O. D. Makinde, Cross diffusion impacts on hydromagnetic radiative peristaltic Carreau-Casson nanofluid flow in an irregular channel, Defect and Diffusion Forum, 377 (2017) 62-83.

DOI: 10.4028/www.scientific.net/ddf.377.62

Google Scholar

[20] R. Latha, B. R. Kumar, O. D. Makinde, Effects of heat dissipation on the peristaltic flow of Jeffery and Newtonian fluid through an asymmetric channel with porous medium, Defect and Diffusion Forum, 387 (2018) 218-243.

DOI: 10.4028/www.scientific.net/ddf.387.218

Google Scholar

[21] R. Latha, B. R. Kumar, O. D. Makinde, Peristaltic flow of Couple stress fluid in an asymmetric channel with partial slip, Defect and Diffusion Forum, 387 (2018) 385-402.

DOI: 10.4028/www.scientific.net/ddf.387.385

Google Scholar

[22] J. Reza, F. Oudina-Mebarek, O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[23] F. Mebarek-Oudina, O. D. Makinde, Numerical simulation of Oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusive Forum, 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[24] A. Wakif, Z. Boulahia, R. Sehaqui, A semianalytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions, Results in Physics, 9 (2018) 1438-1454.

DOI: 10.1016/j.rinp.2018.01.066

Google Scholar

[25] A. Wakif, Z. Boulahia, F. Ali, M. R. Eid, R. Sehaqui, Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu-Water Nanofluids, International Journal of Applied and Computational Mathematics, 4 (2018) 81.

DOI: 10.1007/s40819-018-0513-y

Google Scholar

[26] A. Wakif, Z. Boulahia, S. R. Mishra, M. M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, The European Journal Plus, 133 (2018) 181.

DOI: 10.1140/epjp/i2018-12037-7

Google Scholar

[27] F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research, 48 (2019) 135-147.

DOI: 10.1002/htj.21375

Google Scholar

[28] H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Rheological properties and peristalsis of Rabinowitsch fluid through complaint porous walls in an inclined channel, Journal of Nanofluids, 8 (2019) 970-979.

DOI: 10.1166/jon.2019.1664

Google Scholar

[29] T. Hayat, N. Ali, Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel, Applied Mathematical Modelling, 32 (2008) 761-774.

DOI: 10.1016/j.apm.2007.02.010

Google Scholar

[30] I. Shahazadi, H. Sadaf, S. Nadeem, A. Saleem, Bio-Mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties, Computer Methods and Programs in Biomedicine, 139 (2017) 137-147.

DOI: 10.1016/j.cmpb.2016.10.016

Google Scholar

[31] C. Rajashekhar, G. Manjunatha, H. Vaidya, B. B. Divya, K. V. Prasad, Peristaltic flow of Casson liquid in an inclined porous tube with convective boundary conditions and variable liquid properties, Frontiers in Heat and Mass Transfer 11 (2018) 35.

DOI: 10.5098/hmt.11.35

Google Scholar

[32] H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties, Journal of the Brazilian Society of Mechanical Science and Engineering, 41 (2019) 52.

DOI: 10.1007/s40430-018-1543-4

Google Scholar

[33] G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, Peristaltic mechanism of Bingham liquid in a convectively heated porous tube in the presence of variable liquid properties, Special Topics and Reviews in Porous Media-An International Journal, 10 (2019) 187-201.

DOI: 10.1615/specialtopicsrevporousmedia.2019026973

Google Scholar