[1]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 66, 1995, p.99–105 (FED 231/MD).
Google Scholar
[2]
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nano tube suspensions. Appl. Phys. Lett. 2001; 79:2252–4.
DOI: 10.1063/1.1408272
Google Scholar
[3]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf. 128 (2006) 240–250.
Google Scholar
[4]
Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nano fluids, J. Heat Transf. 125 (2003) 151–155.
DOI: 10.1115/1.1532008
Google Scholar
[5]
K.V. Wang, O.D. Leon, Applications of nanofluid: current and future, Adv.Mech. Eng. 2010 (2010), 519659.
Google Scholar
[6]
O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci. 50 (2011) 1326–1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[7]
K. Vajravelu, K.V. Prasad, J. Lee, C. Lee, I. Pop, R.A.V. Gorder, Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface, Int. J. Therm. Sci. 50 (2011) 843–851.
DOI: 10.1016/j.ijthermalsci.2011.01.008
Google Scholar
[8]
W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary layer flow and heat transfer of nanofluid over a vertical plate, Comput. Fluids 86 (2013) 433–441.
DOI: 10.1016/j.compfluid.2013.07.029
Google Scholar
[9]
M. Zeeshan, R. Baig, T. Ellahi, Hayat, flow of viscous nanofluid between the concentric cylinders, J. Comput. Theor. Nanosci. 11 (2014) 646–654.
DOI: 10.1166/jctn.2014.3408
Google Scholar
[10]
A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model, Int. J. Therm. Sci. 77 (2014) 126–129.
DOI: 10.1016/j.ijthermalsci.2013.10.007
Google Scholar
[11]
K. Zaimi, A. Ishak, I. Pop, Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid, Sci. Rep. 4 (2014) 4404.
DOI: 10.1038/srep04404
Google Scholar
[12]
R. Ellahi, M. Hassan, A. Zeeshan, Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation, Int. J. Heat Mass Transf. 81 (2015) 449–456.
DOI: 10.1016/j.ijheatmasstransfer.2014.10.041
Google Scholar
[13]
D. Srinivasacharya, M. Upendra, K. Venumadhav, MHD boundary layer flow of a nanofluid past a wedge, International Conference on Computational Heat and Mass Transfer-2015, 1064-1070.
DOI: 10.1016/j.proeng.2015.11.463
Google Scholar
[14]
Alok Kumar Pandey, Manoj Kumar, Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip, Alexandria Engineering Journal (2016) 55, 3115–3123.
DOI: 10.1016/j.aej.2016.08.018
Google Scholar
[15]
C.S.K. Raju, J. Babu, N. Sandeep, Heat and Mass transfer in MHD Eyring-Powell nanofluid flow due to cone in porousmedium, Int. J. Eng. Res. Afr. 19 (2015) 57–74.
DOI: 10.4028/www.scientific.net/jera.19.57
Google Scholar
[16]
A.Raptis, Radiation and free convection flow through a porous medium, Int. Comm. Heat Mass Transfer, Voi. 25. No. 2, pp.289-295, (1998).
DOI: 10.1016/s0735-1933(98)00016-5
Google Scholar
[17]
A.J. Chamkha, S. Abbasbandy, A.M. Rashad, K. Vajravelu, Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid, Transp. Porous Media 91 (1) (2012) 261–279.
DOI: 10.1007/s11242-011-9843-5
Google Scholar
[18]
M.A. Saddeek, A.A. Darwish, M.S. Abdelmeguid, Effects of chemical reaction and variable viscosity on hydromangentic mixed convection heat and mass transfer for Hiemenz flow through porous media with radiation, Commun. Nonlinear Sci. Numer. Simul. 12 (2), (2010), 602-615.
DOI: 10.1016/j.cnsns.2006.02.008
Google Scholar
[19]
D. Pal, B. Talukdar, Perturbation analysis of unsteady mangetohydrodyanmic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction, Commun. Nonlinear Sci. Numer. Simul. 15 (7), (2010), 1813 – 1830.
DOI: 10.1016/j.cnsns.2009.07.011
Google Scholar
[20]
A. Mahdy, Effects of chemical reaction and heat generation or absorption on double-diffusive convection from a vertical truncated cone in porous media with variable viscosity, Int. Commun. Heat Mass Transfer, 37(5) (2010) 548-554.
DOI: 10.1016/j.icheatmasstransfer.2010.01.007
Google Scholar
[21]
M.M. Rahman, A. Aziz, M.A. Al-Lawatia, Heat transfer in micro polar fluid along an inclined permeable plate with variable fluid properties, Int. J. Therm. Sci. 49 (6) (2010) 993–1002.
DOI: 10.1016/j.ijthermalsci.2010.01.002
Google Scholar
[22]
M.M. Rahman, M.A. Rahman, M.A. Samad, M.S. Alam, Heat transfer in a micro polar fluid along a non-linear stretching sheet with a temperature-dependent viscosity and variable surface temperature, Int. J. Thermophys. 30 (5) (2009) 1649–1670.
DOI: 10.1007/s10765-009-0656-5
Google Scholar
[23]
R. Cortell, Fluid flow and radiative nonlinear heat transfer over a stretching sheet, J. King Saud Univ. – Sci. 26 (2014) 161–167.
DOI: 10.1016/j.jksus.2013.08.004
Google Scholar
[24]
Tasawar Hayat, Muhammad Tamoor, Muhammad Ijaz Khan, Ahmad Alsaedi, Numerical simulation for nonlinear radiative flow by convective cylinder, Results in Physics 6 (2016) 1031–1035.
DOI: 10.1016/j.rinp.2016.11.026
Google Scholar
[25]
Masood Khan, Waqar Azeem Khan, Ali Saleh Alshomrani, Non-linear radiative flow of three dimensional Burgers nanofluid with new mass flux effect International Journal of Heat and Mass Transfer 101 (2016) 570–576.
DOI: 10.1016/j.ijheatmasstransfer.2016.05.056
Google Scholar
[26]
Sandeep N and Gnaneswara Reddy M., Heat transfer on nonlinear radiative magnetohydrodynamic Cu-water nano fluid flow over two geometries, Journal of Molecular Liquids, (2017), 225, pp.87-94.
DOI: 10.1016/j.molliq.2016.11.026
Google Scholar
[27]
S. R. Ravi Chandra Babu, S. Venkateswarulu and K. Jayalakshmi, MHD chemically reacting and radiating nanofluid over a vertical cone embedded in a porous medium with variable properties. JUSPS-A Vol. 30(2), 110-120 (2018) 110-120.
DOI: 10.22147/jusps-a/300202
Google Scholar
[28]
Alok Kumar Pandey and Manoj Kumar, Chemical reaction and thermal radiation effects on boundary layer flow of nanofluid over a wedge with viscous and Ohmic dissipation, St. Petersburg Poly technical University Journal: Physics and Mathematics 3 (2017) 322–332.
DOI: 10.1016/j.spjpm.2017.10.008
Google Scholar
[29]
Junaid Ahmad Khan and Mustafa, A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species, Results in Physics 8 (2018) 963–970.
DOI: 10.1016/j.rinp.2017.12.067
Google Scholar
[30]
C. Zhang , L. Zheng , X. Zhang , G. Chen , MHD flow and radi- ation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Appl. Math. Modell 39 (1) (2015) 165–181.
DOI: 10.1016/j.apm.2014.05.023
Google Scholar
[31]
K. Vajravelu, J. Nayfeh, Hydromagnetic convection at a cone and a wedge, Int. Commun. Heat Mass Transfer 19 (1992) 701-710.
DOI: 10.1016/0735-1933(92)90052-j
Google Scholar