Effect of Variable Thermal Conductivity Calibration Functions on Fin Temperature Distribution

Article Preview

Abstract:

In this article, we introduce a new thermal conductivity calibration function in modeling heat transfer through extended surfaces. The variable thermal conductivity functions are studied on a stand alone basis and further compared to one another. The calculations are carried out using the Variational Iteration Method (VIM) which is an analytical solution technique. The series solutions are bench-marked against the numerical results obtained by applying the Runge-Kutta fourth order method coupled with shooting technique. The effects of some physical parameters such as the thermogeometric fin parameter and thermal conductivity gradient, on temperature distribution are illustrated and explained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-58

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, Wiley, New York, (2001).

Google Scholar

[2] Q.D. Kern, D.A. Kraus, Extended Surface Heat Transfer, McGraw-Hill, New York, (1972).

Google Scholar

[3] P.L. Ndlovu, R.J. Moitsheki, Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering, Article ID: 273052, (2013).

DOI: 10.1155/2013/273052

Google Scholar

[4] P.L. Ndlovu, R.J. Moitsheki, Predicting the Temperature Distribution in Longitudinal Fins of Various Profiles with Power Law Thermal Properties Using the Variational Iteration Method, Defect and Diffusion Forum, 387, 403-416, (2018).

DOI: 10.4028/www.scientific.net/ddf.387.403

Google Scholar

[5] P. Kanti Roy, A. Mallick, H. Mondal, P. Sibanda, A Modified Decomposition Solution of Triangular Moving Fin with Multiple Variable Thermal Properties, Arabian J. Science and Engineering, 43(30), 1485-1497, (2017).

DOI: 10.1007/s13369-017-2983-3

Google Scholar

[6] M. Turkyilmazoglu, Efficiency of the Longitudinal Fins of Trapezoidal Profile in Motion, Heat Transfer, 139(9), 4 pages, (2017).

DOI: 10.1115/1.4036328

Google Scholar

[7] A. Moradi, A.P.M. Fallah, T. Hayat, O.M. Aldossary, On Solution of Natural Convection and Radiation Heat Transfer Problem in a Moving Porous Fin, Arabian J. Science and Engineering, 39, 1303-1312, (2014).

DOI: 10.1007/s13369-013-0708-9

Google Scholar

[8] A. Aziz, O.D. Makinde, Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin, International J. of Exergy, 7(5), 579-592, (2010).

DOI: 10.1504/ijex.2010.034930

Google Scholar

[9] M.G. Mhlongo, R.J. Moitsheki, O.D. Makinde, Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions, International J. of Heat and Mass Transfer, 57, 117-125, (2013).

DOI: 10.1016/j.ijheatmasstransfer.2012.10.012

Google Scholar

[10] P.L. Ndlovu, R.J. Moitsheki, Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Communications in Nonlinear Science and Numerical Simulation, 18, 2689-2698, (2013).

DOI: 10.1016/j.cnsns.2013.02.019

Google Scholar

[11] Y. Sun, J. Ma, B. Li, Z. Guo, Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method, Numerical Heat Transfer, Part B, 69(1), 68-83, (2016).

DOI: 10.1080/10407782.2015.1081043

Google Scholar

[12] M. Ahmadi, G. Mostafavi, M. Bahrami, Heat transfer from moving exponential fins exposed to heat generation, International J. Heat and Mass Transfer, 116, 346-351, 2018.[13] A. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties, Defect and Diffusion Forum, 387, 10-22, (2018).

DOI: 10.4028/www.scientific.net/ddf.387.10

Google Scholar

[14] O.D. Makinde, R.J. Moitsheki, On Nonperturbative Techniques for Thermal Radiation Effect on Natural Convection past a Vertical Plate Embedded in a Saturated Porous Medium, Mathematical Problems in Engineering, Article ID: 689074, (2008).

DOI: 10.1155/2008/689074

Google Scholar

[15] J.H. He, Variational iteration method - a kind of nonlinear analytical technique: Some examples, International J. Nonlinear Mechanics, 34, 699-708, (1999).

DOI: 10.1016/s0020-7462(98)00048-1

Google Scholar

[16] J.H. He, X.H. Wu, Variational iteration method: New development and applications, Computers and Mathematics with Applications, 54, 881-894, (2007).

DOI: 10.1016/j.camwa.2006.12.083

Google Scholar

[17] A. Moradi, H. Ahmadikia, Investigation of effect thermal conductivity on straight fin performance with DTM, International J. of Engineering and Applied Sciences, 3(1), 42-54, (2011).

Google Scholar

[18] A.M. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients, Central European J. of Engineering, 4, 64-71, (2014).

DOI: 10.2478/s13531-013-0141-6

Google Scholar

[19] M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, S. Nemat-Nassed, New York, USA, (1978).

DOI: 10.1016/b978-0-08-024728-1.50027-6

Google Scholar

[20] A.M. Wazwaz, The variational iteration method for analytic treatment for linear and nonlinear ODEs, Applied Mathematics and Computation, 212, 120-134, (2009).

DOI: 10.1016/j.amc.2009.02.003

Google Scholar

[21] C. Arslantürk, A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, International Communications in Heat and Mass Transfer, 32, 831-841, (2005).

DOI: 10.1016/j.icheatmasstransfer.2004.10.006

Google Scholar

[22] A.F. Mills, Basic heat and mass transfer, Chicago: Irwin Inc., (1995).

Google Scholar

[23] A. Aziz, M. Torabi, Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature, Heat Transfer Asian Research, 41(2), 99-113, (2012).

DOI: 10.1002/htj.20408

Google Scholar

[24] M.H. Chang, A decomposition solution for fins with temperature dependent surface heat flux, International J. of Heat and Mass Transfer, 48, 1819-1824, (2005).

DOI: 10.1016/j.ijheatmasstransfer.2004.07.049

Google Scholar