[1]
A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, Wiley, New York, (2001).
Google Scholar
[2]
Q.D. Kern, D.A. Kraus, Extended Surface Heat Transfer, McGraw-Hill, New York, (1972).
Google Scholar
[3]
P.L. Ndlovu, R.J. Moitsheki, Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering, Article ID: 273052, (2013).
DOI: 10.1155/2013/273052
Google Scholar
[4]
P.L. Ndlovu, R.J. Moitsheki, Predicting the Temperature Distribution in Longitudinal Fins of Various Profiles with Power Law Thermal Properties Using the Variational Iteration Method, Defect and Diffusion Forum, 387, 403-416, (2018).
DOI: 10.4028/www.scientific.net/ddf.387.403
Google Scholar
[5]
P. Kanti Roy, A. Mallick, H. Mondal, P. Sibanda, A Modified Decomposition Solution of Triangular Moving Fin with Multiple Variable Thermal Properties, Arabian J. Science and Engineering, 43(30), 1485-1497, (2017).
DOI: 10.1007/s13369-017-2983-3
Google Scholar
[6]
M. Turkyilmazoglu, Efficiency of the Longitudinal Fins of Trapezoidal Profile in Motion, Heat Transfer, 139(9), 4 pages, (2017).
DOI: 10.1115/1.4036328
Google Scholar
[7]
A. Moradi, A.P.M. Fallah, T. Hayat, O.M. Aldossary, On Solution of Natural Convection and Radiation Heat Transfer Problem in a Moving Porous Fin, Arabian J. Science and Engineering, 39, 1303-1312, (2014).
DOI: 10.1007/s13369-013-0708-9
Google Scholar
[8]
A. Aziz, O.D. Makinde, Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin, International J. of Exergy, 7(5), 579-592, (2010).
DOI: 10.1504/ijex.2010.034930
Google Scholar
[9]
M.G. Mhlongo, R.J. Moitsheki, O.D. Makinde, Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions, International J. of Heat and Mass Transfer, 57, 117-125, (2013).
DOI: 10.1016/j.ijheatmasstransfer.2012.10.012
Google Scholar
[10]
P.L. Ndlovu, R.J. Moitsheki, Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Communications in Nonlinear Science and Numerical Simulation, 18, 2689-2698, (2013).
DOI: 10.1016/j.cnsns.2013.02.019
Google Scholar
[11]
Y. Sun, J. Ma, B. Li, Z. Guo, Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method, Numerical Heat Transfer, Part B, 69(1), 68-83, (2016).
DOI: 10.1080/10407782.2015.1081043
Google Scholar
[12]
M. Ahmadi, G. Mostafavi, M. Bahrami, Heat transfer from moving exponential fins exposed to heat generation, International J. Heat and Mass Transfer, 116, 346-351, 2018.[13] A. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties, Defect and Diffusion Forum, 387, 10-22, (2018).
DOI: 10.4028/www.scientific.net/ddf.387.10
Google Scholar
[14]
O.D. Makinde, R.J. Moitsheki, On Nonperturbative Techniques for Thermal Radiation Effect on Natural Convection past a Vertical Plate Embedded in a Saturated Porous Medium, Mathematical Problems in Engineering, Article ID: 689074, (2008).
DOI: 10.1155/2008/689074
Google Scholar
[15]
J.H. He, Variational iteration method - a kind of nonlinear analytical technique: Some examples, International J. Nonlinear Mechanics, 34, 699-708, (1999).
DOI: 10.1016/s0020-7462(98)00048-1
Google Scholar
[16]
J.H. He, X.H. Wu, Variational iteration method: New development and applications, Computers and Mathematics with Applications, 54, 881-894, (2007).
DOI: 10.1016/j.camwa.2006.12.083
Google Scholar
[17]
A. Moradi, H. Ahmadikia, Investigation of effect thermal conductivity on straight fin performance with DTM, International J. of Engineering and Applied Sciences, 3(1), 42-54, (2011).
Google Scholar
[18]
A.M. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients, Central European J. of Engineering, 4, 64-71, (2014).
DOI: 10.2478/s13531-013-0141-6
Google Scholar
[19]
M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, S. Nemat-Nassed, New York, USA, (1978).
DOI: 10.1016/b978-0-08-024728-1.50027-6
Google Scholar
[20]
A.M. Wazwaz, The variational iteration method for analytic treatment for linear and nonlinear ODEs, Applied Mathematics and Computation, 212, 120-134, (2009).
DOI: 10.1016/j.amc.2009.02.003
Google Scholar
[21]
C. Arslantürk, A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, International Communications in Heat and Mass Transfer, 32, 831-841, (2005).
DOI: 10.1016/j.icheatmasstransfer.2004.10.006
Google Scholar
[22]
A.F. Mills, Basic heat and mass transfer, Chicago: Irwin Inc., (1995).
Google Scholar
[23]
A. Aziz, M. Torabi, Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature, Heat Transfer Asian Research, 41(2), 99-113, (2012).
DOI: 10.1002/htj.20408
Google Scholar
[24]
M.H. Chang, A decomposition solution for fins with temperature dependent surface heat flux, International J. of Heat and Mass Transfer, 48, 1819-1824, (2005).
DOI: 10.1016/j.ijheatmasstransfer.2004.07.049
Google Scholar