[1]
A. Bejan, Shape and structure, from engineering to nature. Cambridge University Press. (2000).
Google Scholar
[2]
A. Bejan, Evolution in thermodynamics, Applied Physics Reviews 4. 011305 (2017).
Google Scholar
[3]
A. Bejan, S. Lorente, Design with constructal theory, Wiley, New Jersey, (2008).
Google Scholar
[4]
A. F. Miguel, L. A. O. Rocha, Tree-shaped fluid flow and heat transfer, Springer, New York, (2018).
Google Scholar
[5]
A. F. Miguel, Fluid flow in a porous tree-shaped network: optimal design and extension of Hess–Murray's law, Physica A. 423 (2015) 61-71.
DOI: 10.1016/j.physa.2014.12.025
Google Scholar
[6]
A. F. Miguel, Toward an optimal design principle in symmetric and asymmetric tree flow networks, Journal of Theoretical Biology. 389 (2016) 101-109.
DOI: 10.1016/j.jtbi.2015.10.027
Google Scholar
[7]
A. F. Miguel, Toward Quantitative unifying theory of natural design of flow systems: emergence and evolution, in: Constructal Law and the Unifying Principle of Design. Springer, New York, (2013).
DOI: 10.1007/978-1-4614-5049-8_2
Google Scholar
[8]
A. F. Miguel, A general model for optimal branching of fluidic networks, Physica A. 512 (2018) 665-674.
DOI: 10.1016/j.physa.2018.07.054
Google Scholar
[9]
W.R. Hess, Über die periphere regulierung der blutzirkulation, Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere. 168 (1917) 439-490.
DOI: 10.1007/bf01681580
Google Scholar
[10]
C.D. Murray, The physiological principle of minimum work applied to the angle of branching of arteries, J. Gen. Physiol. 9 (1926) 835-841.
DOI: 10.1085/jgp.9.6.835
Google Scholar
[11]
H.B.M. Uylings, Optimization of diameters and bifurcation angles in lung and vascular tree structures, Bull. Math. Biol. 39 (1977) 509-520.
DOI: 10.1016/s0092-8240(77)80054-2
Google Scholar
[12]
A. Bejan, L.A.O. Rocha and S. Lorente, Thermodynamic optimization of geometry: T and Y-shaped constructs of fluid streams, Int. J. Therm. Sci. 39 (2000) 949-960.
DOI: 10.1016/s1290-0729(00)01176-5
Google Scholar
[13]
W. Reinke, P. C.Johnson, and P. Gaehtgens, Effect of shear rate variation on apparent viscosity of human blood in ducts of 29 to 94 microns diameter, Circ Res. 59 (1986) 124-132.
DOI: 10.1161/01.res.59.2.124
Google Scholar
[14]
A.F. Miguel, Scaling laws and thermodynamic analysis for vascular branching of microvessels, International Journal of Fluid Mechanics Research. 43 (2016a) 390-403.
DOI: 10.1615/interjfluidmechres.v43.i5-6.30
Google Scholar
[15]
V.R. Pepe, L.A.O. Rocha and A.F. Miguel, Optimal branching structure of fluidic networks with permeable walls, BioMed Research International. 5284816 (2017) 1-12.
DOI: 10.1155/2017/5284816
Google Scholar
[16]
V.R. Pepe, L.A.O. Rocha and A.F. Miguel, Is it the Hess-Murray law always valid?, The Publishing House of the Romanian Academy. 1 (2017a) 444-455.
Google Scholar
[17]
W. Wechsatol, S. Lorente and A. Bejan, Tree-shaped flow structures with local junction losses, Int. J. Heat Mass Trans. 49 (2006) 2957-2964.
DOI: 10.1016/j.ijheatmasstransfer.2006.01.047
Google Scholar