Effect of Laser Cutting Parameters on the Heat Affected Zone and on the Boundary Layer in Steel Laser Processing

Article Preview

Abstract:

This paper investigates the effect of the laser cutting parameters on the heat-affected zone, and on the boundary layer of stainless steel processing. A new analytical resolution based on the boundary layer theory is used to deduce the interaction effects of the cutting parameters on the above zones. The results revealed that, the laminar nitrogen assist gas has a negligible effect on the HAZ depth but it has a remarkable effect on the molten boundary layer. It is also noticed that the pressure gradient remains very small compared to the interface shearing and the conductive heat losses from the cutting zone towards the substrate is dominant compared to the convective heat losses towards the gas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-163

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Dubey, V. Yadava, Laser beam machining, Int.J. Mach. Tool.Manu. 48 (2008) 609–628.

Google Scholar

[2] K. Huehnlein, K. Tschirpke, R. Helmann, Optimization of laser cutting processes using design of experiments, Phys Procedia. 5 (2010) 243–252.

DOI: 10.1016/j.phpro.2010.08.050

Google Scholar

[3] B. S. Yilbas, S. Khan, K. Raza et al., Laser cutting of 7050 Al alloy reinforced with Al2O3 and B4C composites, Te International Journal of Advanced Manufacturing Technology. vol.50, no.1–4, (2010) 185–193.

DOI: 10.1007/s00170-009-2489-6

Google Scholar

[4] Schulz W, Becker D, Franke J, Kemmerling and Herziger G, Heat conduction losses in laser cutting of metals, J. Phys. D:Appl. Phys. 26 (1993) 1357-1363.

DOI: 10.1088/0022-3727/26/9/003

Google Scholar

[5] I. Miraoui, E. Elimi, M.Boujelbene, and E.Bayraktar, Analysis of roughness and microstructure for high-power laser cutting of stainless steel, Advanced Science Letters. vol.19, no.2, (2013) 483–486.

DOI: 10.1166/asl.2013.4775

Google Scholar

[6] I. Miraoui, E. Bayraktar, and E. Bayraktar, Effects of laser cutting main parameters on microhardness and microstructure changes of stainless steel, Advanced Materials Research. vol. 664, (2013) 811–816.

DOI: 10.4028/www.scientific.net/amr.664.811

Google Scholar

[7] I. Miraoui, M. Zaied, and M. Boujelbene, Effect of laser beam diameter on cut edge of steel plates obtained by laser machining, Applied Mechanics and Materials, vol. 467 (2014) 227– 232.

DOI: 10.4028/www.scientific.net/amm.467.227

Google Scholar

[8] M. Vicanek, G. Simon, Momentum and heat transfer of an inert gas jet to the melt in laser cutting, J. Phys. D, 20 (1987) 1191–1196.

DOI: 10.1088/0022-3727/20/9/016

Google Scholar

[9] C. Wandera, A. Salminen, V. Kujanpää , Inert gas cutting of thick section stainless steel and medium section aluminum using a high power fiber laser, J. Laser Appl. 21 (3) (2009) 154-161.

DOI: 10.2351/1.3184429

Google Scholar

[10] Saeed omar Mashikhi, John Powell, A.F.H. Kaplan, K. T. Voisey, Heat affected zones and oxidation marks in fiber laser–oxygen cutting of mild steel, Journal of Laser Applications,.

DOI: 10.2351/1.3614404

Google Scholar

[11] Al-Ali, H.H. and Selim, M.S. Momentum and Heat Transfer in the Entrance Region of a parallel plate channel: Developing Laminar Flow with constant wall temperature,, Int. J. Heat Mass Transfer, Vol. 51, No. 4, (1992).

DOI: 10.1007/bf00849271

Google Scholar

[12] P. Lee, S. V. Garimella, Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios, Int. J. Heat. Mass Transfer. 49 (2006) 3060–3067.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.011

Google Scholar

[13] L. D. Scintillaa,L. Tricaricoa,∗,A. Wetzigb,A. Mahrlec, E. BeyerPrimary losses in disk and CO2 laser beam inert gas fusion cutting, Journal of Materials Processing Technology. 211 (2011) 2050– (2061).

DOI: 10.1016/j.jmatprotec.2011.07.002

Google Scholar

[14] A. Mahrle, E. Beyer, Theoretical estimation of achievable travel rates in inert-gas fusion cutting with fibre and CO2 lasers, Proc. Of the Fifth Int. WLT-Conf. on Lasers in Manufacturing, LIM (2009) 215-220.

DOI: 10.2351/1.5061618

Google Scholar

[15] L.D. Scintilla, L. Tricarico, A. Wetzig, A. Mahrle, E. Beyer, Primary losses in disk and CO2 laser beam inert-gas fusion cutting, J. Mater. Process. Tech.211 (2011) 2050-2061.

DOI: 10.1016/j.jmatprotec.2011.07.002

Google Scholar

[16] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, (1982).

Google Scholar

[17] Incropera, F.P. and Dewitt, D.P. Fundamentals of Heat and Mass Transfer,, John Wiley & Sons, New York. (1996).

Google Scholar

[18] Milo. J. MADI and Miroslav R. Radovanovi, Analysis of the heat affected zone in co2 laser cutting of stainless steel, Thermal science, , Vol. 16, suppl. 2, (2012) pp. S363-S373.

Google Scholar

[19] Imed Miraoui, Mohamed Boujelbene, and Mouna Zaied, High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis. Advances in Materials Science and Engineering ID 1242565, (2016) 8 pages.

DOI: 10.1155/2016/1242565

Google Scholar