[1]
A. Dubey, V. Yadava, Laser beam machining, Int.J. Mach. Tool.Manu. 48 (2008) 609–628.
Google Scholar
[2]
K. Huehnlein, K. Tschirpke, R. Helmann, Optimization of laser cutting processes using design of experiments, Phys Procedia. 5 (2010) 243–252.
DOI: 10.1016/j.phpro.2010.08.050
Google Scholar
[3]
B. S. Yilbas, S. Khan, K. Raza et al., Laser cutting of 7050 Al alloy reinforced with Al2O3 and B4C composites, Te International Journal of Advanced Manufacturing Technology. vol.50, no.1–4, (2010) 185–193.
DOI: 10.1007/s00170-009-2489-6
Google Scholar
[4]
Schulz W, Becker D, Franke J, Kemmerling and Herziger G, Heat conduction losses in laser cutting of metals, J. Phys. D:Appl. Phys. 26 (1993) 1357-1363.
DOI: 10.1088/0022-3727/26/9/003
Google Scholar
[5]
I. Miraoui, E. Elimi, M.Boujelbene, and E.Bayraktar, Analysis of roughness and microstructure for high-power laser cutting of stainless steel, Advanced Science Letters. vol.19, no.2, (2013) 483–486.
DOI: 10.1166/asl.2013.4775
Google Scholar
[6]
I. Miraoui, E. Bayraktar, and E. Bayraktar, Effects of laser cutting main parameters on microhardness and microstructure changes of stainless steel, Advanced Materials Research. vol. 664, (2013) 811–816.
DOI: 10.4028/www.scientific.net/amr.664.811
Google Scholar
[7]
I. Miraoui, M. Zaied, and M. Boujelbene, Effect of laser beam diameter on cut edge of steel plates obtained by laser machining, Applied Mechanics and Materials, vol. 467 (2014) 227– 232.
DOI: 10.4028/www.scientific.net/amm.467.227
Google Scholar
[8]
M. Vicanek, G. Simon, Momentum and heat transfer of an inert gas jet to the melt in laser cutting, J. Phys. D, 20 (1987) 1191–1196.
DOI: 10.1088/0022-3727/20/9/016
Google Scholar
[9]
C. Wandera, A. Salminen, V. Kujanpää , Inert gas cutting of thick section stainless steel and medium section aluminum using a high power fiber laser, J. Laser Appl. 21 (3) (2009) 154-161.
DOI: 10.2351/1.3184429
Google Scholar
[10]
Saeed omar Mashikhi, John Powell, A.F.H. Kaplan, K. T. Voisey, Heat affected zones and oxidation marks in fiber laser–oxygen cutting of mild steel, Journal of Laser Applications,.
DOI: 10.2351/1.3614404
Google Scholar
[11]
Al-Ali, H.H. and Selim, M.S. Momentum and Heat Transfer in the Entrance Region of a parallel plate channel: Developing Laminar Flow with constant wall temperature,, Int. J. Heat Mass Transfer, Vol. 51, No. 4, (1992).
DOI: 10.1007/bf00849271
Google Scholar
[12]
P. Lee, S. V. Garimella, Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios, Int. J. Heat. Mass Transfer. 49 (2006) 3060–3067.
DOI: 10.1016/j.ijheatmasstransfer.2006.02.011
Google Scholar
[13]
L. D. Scintillaa,L. Tricaricoa,∗,A. Wetzigb,A. Mahrlec, E. BeyerPrimary losses in disk and CO2 laser beam inert gas fusion cutting, Journal of Materials Processing Technology. 211 (2011) 2050– (2061).
DOI: 10.1016/j.jmatprotec.2011.07.002
Google Scholar
[14]
A. Mahrle, E. Beyer, Theoretical estimation of achievable travel rates in inert-gas fusion cutting with fibre and CO2 lasers, Proc. Of the Fifth Int. WLT-Conf. on Lasers in Manufacturing, LIM (2009) 215-220.
DOI: 10.2351/1.5061618
Google Scholar
[15]
L.D. Scintilla, L. Tricarico, A. Wetzig, A. Mahrle, E. Beyer, Primary losses in disk and CO2 laser beam inert-gas fusion cutting, J. Mater. Process. Tech.211 (2011) 2050-2061.
DOI: 10.1016/j.jmatprotec.2011.07.002
Google Scholar
[16]
H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, (1982).
Google Scholar
[17]
Incropera, F.P. and Dewitt, D.P. Fundamentals of Heat and Mass Transfer,, John Wiley & Sons, New York. (1996).
Google Scholar
[18]
Milo. J. MADI and Miroslav R. Radovanovi, Analysis of the heat affected zone in co2 laser cutting of stainless steel, Thermal science, , Vol. 16, suppl. 2, (2012) pp. S363-S373.
Google Scholar
[19]
Imed Miraoui, Mohamed Boujelbene, and Mouna Zaied, High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis. Advances in Materials Science and Engineering ID 1242565, (2016) 8 pages.
DOI: 10.1155/2016/1242565
Google Scholar