Effect of Bubbles in Optimized Y-Shaped Tubes of Fluid Streams

Article Preview

Abstract:

Multiphase transport processes are encountered in many branches of science and engineering. Bubbles can be used, for example, as to cut off the blood flows that feed sick tissue growth and as potential drug delivery systems. This paper addresses the effect of bubbles on the increase of flow resistance within optimized Y-shaped tubes under different size constraints (volume, surface area). Y-shaped constructs of fluid streams can mimic the anatomy of the vascular system, and the results presented in this paper can be used for facilitating the design and analysis of the flow of bubbles through these systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-128

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Bohler, J. Brauns, H. Hotzl, M. Nahold, Air injection and soil air extraction as a combined method for cleaning contaminated sites – observations from test sites in sediments and solid rocks, in: F. Arendt, M. Hinsenveld, W. J. van den Brink W.J. (Eds), Contaminated Soil '90, Kluwer Academic Publishers, Norwell, Massachusetts, 1990, pp.1039-1044.

DOI: 10.1007/978-94-011-3270-1_231

Google Scholar

[2] V. A. Fry, J. S. Selker, S. M. Gorelick, Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation, Water Resources Research 33 (1997) 26872696.

DOI: 10.1029/97wr02428

Google Scholar

[3] O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, J. B. Fowlkes, Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study, IEEE Trans. Ultrason Ferroelectr. Freq. Control. 52 (2005) 1101-1120.

DOI: 10.1109/tuffc.2005.1503996

Google Scholar

[4] S. Samuel, A. Duprey, M. L. Fabiilli, J. L. Bull, J. B. Fowlkes, In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization, Microcirculation 19 (2012) 501-509.

DOI: 10.1111/j.1549-8719.2012.00176.x

Google Scholar

[5] S.-T. Kang,Y.-C. Lin, C.-K. Yeh, Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms, Ultrasonics Sonochemistry 21 (2014) 1866-1874.

DOI: 10.1016/j.ultsonch.2014.03.007

Google Scholar

[6] Y. Feng, D. Qin, J. Zhang, L. Zhang, A. Bouakaz, M. Wan, Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization, Applied Physics Letters 112 (2018) 233701.

DOI: 10.1063/1.5025594

Google Scholar

[7] A. F. Miguel, L. A. O. Rocha, Tree-shaped flow networks fundamentals, in: A. F. Miguel, L. A. O. Rocha (Eds.) Tree-Shaped Fluid Flow and Heat Transfer, Springer, New York, 2018, pp.9-34.

DOI: 10.1007/978-3-319-73260-2_2

Google Scholar

[8] W. R. Hess, Uber die periphere Regulierung der Blutzirkulation, Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere 168 (1917) 439-490.

DOI: 10.1007/bf01681580

Google Scholar

[9] C. D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences 12 (1926) 207-214.

DOI: 10.1073/pnas.12.3.207

Google Scholar

[10] A. Bejan, L. A. O. Rocha, S. Lorente, Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams, International Journal of Thermal Sciences 39 (2000) 949-960.

DOI: 10.1016/s1290-0729(00)01176-5

Google Scholar

[11] W. Wechsatol, S. Lorente, A. Bejan, Tree-shaped flow structures with local junction losses. International Journal of Heat Mass Transfer 40 (2006) 2957-2964.

DOI: 10.1016/j.ijheatmasstransfer.2006.01.047

Google Scholar

[12] A. F. Miguel, Fluid flow in a porous tree-shaped network: optimal design and extension of Hess–Murray's law, Physica A: Statistical Mechanics and its Applications 423 (2015) 61-71.

DOI: 10.1016/j.physa.2014.12.025

Google Scholar

[13] A. F. Miguel, A study of entropy generation in tree-shaped flow structures, International Journal of Heat and Mass Transfer 92 (2016) 349-359.

DOI: 10.1016/j.ijheatmasstransfer.2015.08.067

Google Scholar

[14] A. F. Miguel, Constructal branching design for fluid flow and heat transfer, International Journal of Heat and Mass Transfer 122 (2018) 204-211.

DOI: 10.1016/j.ijheatmasstransfer.2018.01.095

Google Scholar

[15] A. F. Miguel, Optimal Y-shaped constructs heat sinks under different size constraints, International Journal of Heat and Mass Transfer 131 (2019) 64-71.

DOI: 10.1016/j.ijheatmasstransfer.2018.11.033

Google Scholar

[16] A. F. Miguel, Towards methodologies for optimal fluid networks design, Journal of Applied Fluid Mechanics 12 (2019) 1223-1229.

Google Scholar

[17] A. F. Miguel, A general model for optimal branching of fluidic networks, Physica A: Statistical Mechanics and its Applications 512 (2018) 665-674.

DOI: 10.1016/j.physa.2018.07.054

Google Scholar

[18] P. Xu, A.P. Sasmito, B. Yu, A.S. Mujumdar, Transport phenomena and properties in treelike networks, Applied Mechanics Reviews 68 (2016) 040802-1–040802-17.

DOI: 10.1115/1.4033966

Google Scholar

[19] A. F. Miguel, Pressure model for capillary tree-shaped fractal networks, Defect and Diffusion Forum 379 (2017) 166-170.

DOI: 10.4028/www.scientific.net/ddf.379.166

Google Scholar

[20] M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, C. R. Kleijn, J. J. Heiszwolf, Inertial and interfacial effects on pressure drop of Taylor flow in capillaries, AIChE J. 51 (2005) 2428-2440.

DOI: 10.1002/aic.10495

Google Scholar

[21] F. P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics 10 (1961), 166-188.

Google Scholar

[22] A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, (2000).

Google Scholar