[1]
U. Bohler, J. Brauns, H. Hotzl, M. Nahold, Air injection and soil air extraction as a combined method for cleaning contaminated sites – observations from test sites in sediments and solid rocks, in: F. Arendt, M. Hinsenveld, W. J. van den Brink W.J. (Eds), Contaminated Soil '90, Kluwer Academic Publishers, Norwell, Massachusetts, 1990, pp.1039-1044.
DOI: 10.1007/978-94-011-3270-1_231
Google Scholar
[2]
V. A. Fry, J. S. Selker, S. M. Gorelick, Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation, Water Resources Research 33 (1997) 26872696.
DOI: 10.1029/97wr02428
Google Scholar
[3]
O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, J. B. Fowlkes, Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study, IEEE Trans. Ultrason Ferroelectr. Freq. Control. 52 (2005) 1101-1120.
DOI: 10.1109/tuffc.2005.1503996
Google Scholar
[4]
S. Samuel, A. Duprey, M. L. Fabiilli, J. L. Bull, J. B. Fowlkes, In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization, Microcirculation 19 (2012) 501-509.
DOI: 10.1111/j.1549-8719.2012.00176.x
Google Scholar
[5]
S.-T. Kang,Y.-C. Lin, C.-K. Yeh, Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms, Ultrasonics Sonochemistry 21 (2014) 1866-1874.
DOI: 10.1016/j.ultsonch.2014.03.007
Google Scholar
[6]
Y. Feng, D. Qin, J. Zhang, L. Zhang, A. Bouakaz, M. Wan, Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization, Applied Physics Letters 112 (2018) 233701.
DOI: 10.1063/1.5025594
Google Scholar
[7]
A. F. Miguel, L. A. O. Rocha, Tree-shaped flow networks fundamentals, in: A. F. Miguel, L. A. O. Rocha (Eds.) Tree-Shaped Fluid Flow and Heat Transfer, Springer, New York, 2018, pp.9-34.
DOI: 10.1007/978-3-319-73260-2_2
Google Scholar
[8]
W. R. Hess, Uber die periphere Regulierung der Blutzirkulation, Pflüger's Archiv für die Gesamte Physiologie des Menschen und der Tiere 168 (1917) 439-490.
DOI: 10.1007/bf01681580
Google Scholar
[9]
C. D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences 12 (1926) 207-214.
DOI: 10.1073/pnas.12.3.207
Google Scholar
[10]
A. Bejan, L. A. O. Rocha, S. Lorente, Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams, International Journal of Thermal Sciences 39 (2000) 949-960.
DOI: 10.1016/s1290-0729(00)01176-5
Google Scholar
[11]
W. Wechsatol, S. Lorente, A. Bejan, Tree-shaped flow structures with local junction losses. International Journal of Heat Mass Transfer 40 (2006) 2957-2964.
DOI: 10.1016/j.ijheatmasstransfer.2006.01.047
Google Scholar
[12]
A. F. Miguel, Fluid flow in a porous tree-shaped network: optimal design and extension of Hess–Murray's law, Physica A: Statistical Mechanics and its Applications 423 (2015) 61-71.
DOI: 10.1016/j.physa.2014.12.025
Google Scholar
[13]
A. F. Miguel, A study of entropy generation in tree-shaped flow structures, International Journal of Heat and Mass Transfer 92 (2016) 349-359.
DOI: 10.1016/j.ijheatmasstransfer.2015.08.067
Google Scholar
[14]
A. F. Miguel, Constructal branching design for fluid flow and heat transfer, International Journal of Heat and Mass Transfer 122 (2018) 204-211.
DOI: 10.1016/j.ijheatmasstransfer.2018.01.095
Google Scholar
[15]
A. F. Miguel, Optimal Y-shaped constructs heat sinks under different size constraints, International Journal of Heat and Mass Transfer 131 (2019) 64-71.
DOI: 10.1016/j.ijheatmasstransfer.2018.11.033
Google Scholar
[16]
A. F. Miguel, Towards methodologies for optimal fluid networks design, Journal of Applied Fluid Mechanics 12 (2019) 1223-1229.
Google Scholar
[17]
A. F. Miguel, A general model for optimal branching of fluidic networks, Physica A: Statistical Mechanics and its Applications 512 (2018) 665-674.
DOI: 10.1016/j.physa.2018.07.054
Google Scholar
[18]
P. Xu, A.P. Sasmito, B. Yu, A.S. Mujumdar, Transport phenomena and properties in treelike networks, Applied Mechanics Reviews 68 (2016) 040802-1–040802-17.
DOI: 10.1115/1.4033966
Google Scholar
[19]
A. F. Miguel, Pressure model for capillary tree-shaped fractal networks, Defect and Diffusion Forum 379 (2017) 166-170.
DOI: 10.4028/www.scientific.net/ddf.379.166
Google Scholar
[20]
M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, C. R. Kleijn, J. J. Heiszwolf, Inertial and interfacial effects on pressure drop of Taylor flow in capillaries, AIChE J. 51 (2005) 2428-2440.
DOI: 10.1002/aic.10495
Google Scholar
[21]
F. P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics 10 (1961), 166-188.
Google Scholar
[22]
A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, (2000).
Google Scholar