Water Diffusion in Intermittent Solar Drying of Mangaba (Hancornia speciosa)

Article Preview

Abstract:

The present work has the objective to study the water diffusion in the process of intermittent solar drying of mangabas. Osmotic dehydration (OD) pretreatment was performed in sucrose solution and the drying took place in a direct solar dryer with the fruits arranged in stainless steel screens, temperatures varying between 30 and 45°C along the day with peaks of 70°C. The period of intermittence was approximately 16 h reaching equilibrium after 6 days. The diffusional model based on the second Fick’s law was proposed for each of the daily drying periods of 360 minutes, considered that the process is controlled by internal diffusion, negligible external resistance, spherical geometry, shrinkage based on the average radius. The coefficients of effective diffusion (Def) obtained by using 4 terms of the infinite series, present values of Def ranging from 0.2 to 3.30x10-10 m2/s with R2≥ 0.868 and average relative deviations MRD≤10-2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-201

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://www.sidra.ibge.gov.br.

Google Scholar

[2] H. Schmitz, D. M. Mota, L.F.C Cardoso, Movimento das catadoras de mangaba: a conquista de uma identidade. In Seminário Nacional e I Seminário Internacional, Florianópolis, Brazil, (2010).

Google Scholar

[3] A. Lenart, Osmo-convective drying of fruits and vegetables: Tecnology and application, Drying Technology. 14 (1996) 391 - 413.

DOI: 10.1080/07373939608917104

Google Scholar

[4] J. Aprajeeta, R. Gopirajah, C. Anandharamakrishnan, Shrinkage and porosity effects on heat and mass transfer during potato drying, Journal of Food Engineering. 144 (2015) 119–128.

DOI: 10.1016/j.jfoodeng.2014.08.004

Google Scholar

[5] J. Crank. The mathematics of diffusion. 2 Ed. Oxford: Clarendon, (1975).

Google Scholar

[6] R. B. Keey. Drying: principles and practice. Oxford: Pergamon Press, (1972).

Google Scholar

[7] J. S. Nunes, D. S. Castro, I. S. Moreira, F. C. Sousa, W. P. Silva, Descrição cinética de secagem da polpa de jabuticaba usando modelos empíricos, Revista Verde de Agroecologia e Desenvolvimento Sustentável. 9 (2014) 20 – 26.

DOI: 10.18378/rvads.v11i3.4314

Google Scholar

[8] A. Lingayat, V. P. Chandramohan, V. R. K. RAJU, Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying, Energy Procedia. 109 (2017) 409 – 416.

DOI: 10.1016/j.egypro.2017.03.041

Google Scholar

[9] E. Hajar, T. Rachid, B. M. Najib, Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test, Energy Procedia. 141(2017) 29 – 33.

DOI: 10.1016/j.egypro.2017.11.114

Google Scholar

[10] R. Ouaabou, B. Nabil, N. Hidar, L. Lahnine, A. Idlimam, A. Lamharrar, H. Hanine, M. Mahrouz, Valorization of solar drying process in the production of dried Moroccan sweet cherries, Solar Energy. 172 (2018) 158 – 164.

DOI: 10.1016/j.solener.2018.05.079

Google Scholar

[11] A. Mahapatra, P. P. Tripathy, P. P, Experimental investigation and numerical modeling of heat transfer during solar drying of carrot slices, Heat and Mass Transfer. 54 (2018) 1 – 14.

DOI: 10.1007/s00231-018-2492-2

Google Scholar

[12] V. L. Meneghetti, E. Aosani, J. C. Da Rocha, M. De Oliveira, M. C. Elias, R. S. Pohndorf, Modelos matemáticos para a secagem intermitente de arroz em casca, Revista Brasileira de Engenharia Agrícola e Ambiental. 16, (2012) 1115–1120.

DOI: 10.1590/s1415-43662012001000012

Google Scholar

[13] H. W. Park, W. Y. Han, W. B. Yoon, Drying characteristics of soybean (Glycine max) using continuous drying and intermittent drying, International Journal of Food Engineering. 14 (2018) 1 – 11.

DOI: 10.1515/ijfe-2018-0057

Google Scholar