Turbulent Heat Transfer Characteristics of a W-Baffled Channel Flow - Heat Transfer Aspect

Article Preview

Abstract:

In this work, the thermal behavior of a turbulent forced-convection flow of air in a rectangular cross section channel with attached W-shaped obstacles is investigated. The continuity, momentum and energy equations employed to control the heat and velocity in the computational domain. The turbulence model of k-ε is employed to simulate the turbulence effects. The finite volume method with SIMPLE algorithm is employed as the solution method. The results are reported temperature, local and average Nusselt numbers, and mean velocity contours. The subject is relevant and important for industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-130

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Muszyński, S. M. Kozieł, Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Archives of Thermodynamics, 37(3) (2016) 45-62.

DOI: 10.1515/aoter-2016-0019

Google Scholar

[2] J. S. Park, J. C. Han, Y. Huang, S. Ou, R. J. Boyle, Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs, International Journal of Heat and Mass Transfer, 35(11) (1992) 2891-2903.

DOI: 10.1016/0017-9310(92)90309-g

Google Scholar

[3] T. T. Wong, C. W. Leung, Z. Y. Li, W. Q. Tao, Turbulent convection of air-cooled rectangular duct with surface-mounted cross-ribs, International Journal of Heat and Mass Transfer, 46 (2003) 4629-4638.

DOI: 10.1016/s0017-9310(03)00298-9

Google Scholar

[4] Nasiruddin, M. H. Kamran Siddiqui, Heat transfer augmentation in a heat exchanger tube using a baffle, International Journal of Heat and Fluid Flow, 28 (2007) 318-328.

DOI: 10.1016/j.ijheatfluidflow.2006.03.020

Google Scholar

[5] J. J. Hwang, T. M. Liou, Heat transfer in a rectangular channel with perforated turbulence promoters using holographic interferometry measurement, International Journal of Heat and Mass Transfer, 38(17) (1995) 3197-3207.

DOI: 10.1016/0017-9310(95)00065-h

Google Scholar

[6] R. Karwa, B. K. Maheshwari, Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches, International Communications in Heat and Mass Transfer, 36 (2009) 264-268.

DOI: 10.1016/j.icheatmasstransfer.2008.11.005

Google Scholar

[7] D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Applied Thermal Engineering, 101 (2016)156-164.

DOI: 10.1016/j.applthermaleng.2016.02.136

Google Scholar

[8] J. A. Khan, J. Hinton, S. C. Baxter, Enhancement of heat transfer with inclined baffles and ribs combined, Enhanced Heat Transfer, 9(3/4) (2002) 137-151.

DOI: 10.1080/10655130215738

Google Scholar

[9] O. Se Kyung, B. K. P. Ary, S. W. Ahn, Heat transfer and frictional characteristics in rectangular channel with inclined perforated baffles, World Academy of Science, Engineering and Technology, 3(1) (2009) 13-18.

Google Scholar

[10] K. H. Ko, N. K. Anand, Use of porous baffles to enhance heat transfer in a rectangular channel, International Journal of Heat and Mass Transfer, 46 (2003) 4191-4199.

DOI: 10.1016/s0017-9310(03)00251-5

Google Scholar

[11] N. Guerroudj, H. Kahalerras, Mixed convection in a channel provided with heated porous blocks of various shapes, Energy Conversion and Management, 51 (2010) 505-517.

DOI: 10.1016/j.enconman.2009.10.015

Google Scholar

[12] Kamali, A. R. Binesh, The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces, International Communications in Heat and Mass Transfer, 35 (2008) 1032-1040.

DOI: 10.1016/j.icheatmasstransfer.2008.04.012

Google Scholar

[13] S. Sripattanapipat, P. Promvonge, Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, International Communications in Heat and Mass Transfer, 36 (2009) 32-38.

DOI: 10.1016/j.icheatmasstransfer.2008.09.008

Google Scholar

[14] S. K. Saini, R. P. Saini, Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness, Solar Energy, 82 (2008) 1118-1130.

DOI: 10.1016/j.solener.2008.05.010

Google Scholar

[15] P. Stehlik, J. Nemcansky, D. Kral, L. W. Swanson, Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles, Heat Transfer Engineering, 15 (1994) 55-65.

DOI: 10.1080/01457639408939818

Google Scholar

[16] J. Wen, H. Yang, S. Wang, Y. Xue, X. Tong, Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles, International Journal of Heat and Mass Transfer, 84 (2015) 990-997.

DOI: 10.1016/j.ijheatmasstransfer.2014.12.071

Google Scholar

[17] H. E. Fawaz, M. T. S. Badawy, M. F. Abd Rabbo, A. Elfeky, Numerical investigation of fully developed periodic turbulent flow in a square channel fitted with 45° in-line V-baffle turbulators pointing upstream, Alexandria Engineering Journal 57(2) (2018) 633-642.

DOI: 10.1016/j.aej.2017.02.020

Google Scholar

[18] P. Sriromreun, C. Thianpong, P. Promvonge, Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles, International Communications in Heat and Mass Transfer, 39 (2012) 945-952.

DOI: 10.1016/j.icheatmasstransfer.2012.05.016

Google Scholar

[19] K. Boukhadia, H. Ameur, D. Sahel, M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, International Journal of Thermal Sciences, 126 (2018) 172-180.

DOI: 10.1016/j.ijthermalsci.2017.12.025

Google Scholar

[20] R. Ben Slama, The air solar collectors: comparative study, introduction of baffles to favor the heat transfer, Solar Energy, 81 (2007) 139-149.

DOI: 10.1016/j.solener.2006.05.002

Google Scholar

[21] R. K. Karwa, Experimental studies of augmented heat transfer and friction in symmetrically heated rectangular ducts with ribs on heated wall in transverse, inclined, v-continuous and v-discrete pattern, International Communications in Heat and Mass Transfer, 30 (2003) 241-250.

DOI: 10.1016/s0735-1933(03)00035-6

Google Scholar

[22] S. Tamna, S. Skullong, C. Thianpong, P. Promvonge, Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators, Solar Energy, 110 (2014) 720-735.

DOI: 10.1016/j.solener.2014.10.020

Google Scholar

[23] R. Kumar, A. Kumar, R. Chauhan, M. Sethi, Heat transfer enhancement in solar air channel with broken multiple V-type baffles, Case Studies in Thermal Engineering, 8 (2016) 187-197.

DOI: 10.1016/j.csite.2016.07.001

Google Scholar

[24] F. Wang, X. Chen, J. Chen, Y. You, Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles, Engineering Geology, 220(30) (2017) 43-51.

DOI: 10.1016/j.enggeo.2017.01.014

Google Scholar

[25] L. C. Demartini, H. A. Vielmo, Q. V. Möller, Numeric and experimental analysis of turbulent flow through a channel with baffle plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26 (2004) 153-159.

DOI: 10.1590/s1678-58782004000200006

Google Scholar

[26] B. E. Launder, D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 3(2) (1974) 269-289.

DOI: 10.1016/0045-7825(74)90029-2

Google Scholar

[27] S. V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, New York, (1980).

Google Scholar

[28] B. P. Leonard, S. Mokhtari, ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow, NASA TM 1-2568, NASA Lewis Research Center, (1990).

Google Scholar

[29] M. Sankar, S. Kiran, G.K. Ramesh, O.D. Makinde, Natural convection in a non-uniformly heated vertical annular cavity, Defect and Diffusion Forum, 377 (20187) 189-199.

DOI: 10.4028/www.scientific.net/ddf.377.189

Google Scholar

[30] O. D. Makinde, Z.H. Khan, R. Ahmad, W. A. Khan, Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium, Physics of Fluids, 30 (2018) 083601 (7pages).

DOI: 10.1063/1.5046331

Google Scholar