Heat Transfer Analysis of Three-Dimensional Mixed Convective Flow of an Oldroyd-B Nanoliquid over a Slippery Stretching Surface

Article Preview

Abstract:

The present article examines Soret and Dufour effects on the three-dimensional mixed convective flow of an Oldroyd-B nanoliquid. The flow is caused due to bidirectional stretching of the surface in the presence of an induced magnetic field and heat generation/absorption. Besides, concentration and thermal buoyancy impacts are inspected. The velocity slip, convective and zero nanoparticle mass flux boundary condition at the surface are taken into account. Nonlinear system of equations which are highly coupled is solved via optimal homotopy algorithm. The influence of pertinent parameters on velocity, temperature, and concentration are analyzed graphically. The impact of Dufour number is quite substantial on temperature whereas Soret number increases the concentration. To see the legitimacy of the present work, the present results are compared with the results available in the literature and noted an excellent agreement for the limiting cases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-182

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int J Heat Mass Transfer 46 (2003) 3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[2] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int J Heat Fluid Flow 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[3] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf 128 (2006) 240-250.

Google Scholar

[4] M. A. Sheremet, I. Pop, Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno's mathematical model, Int J Heat Mass Transf 79 (2014) 137–145.

DOI: 10.1016/j.ijheatmasstransfer.2014.07.092

Google Scholar

[5] A. J. Chamkha, V. I. Miroshnichenko, A. Mikhail, M. A. Sheremet, Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity, J Therm Sci Eng Appl 9(4) (2017) 041004.

DOI: 10.1115/1.4036203

Google Scholar

[6] K. V. Prasad, K.Vajravelu, H. Vaidya, MHD Casson nanofluid flow and heat transfer at a stretching sheet with variable thickness, J Nanofluids 5 (2016) 423-435.

DOI: 10.1166/jon.2016.1228

Google Scholar

[7] K. V. Prasad, K. Vajravelu, H. Vaidya, R. A. Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results Phys. 7 (2017) 1462–1474.

DOI: 10.1016/j.rinp.2017.03.022

Google Scholar

[8] K. V. Prasad, H. Vaidya, K. Vajravelu, V. Ramanjini, Analytical study of Cattaneo-Christov heat flux model for Williamson-nanofluid flow over a slender elastic sheet with variable thickness, J Nanofluids 7 (2018) 583–594.

DOI: 10.1166/jon.2018.1475

Google Scholar

[9] K. Vajravelu, K. V. Prasad, C-O Ng, H. Vaidya, MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid properties and transpiration, Int J Mech Materials Eng. 12(9) (2017) 1-14 https://doi.org/10.1186%2Fs40712-017-0076-4.

DOI: 10.1186/s40712-017-0076-4

Google Scholar

[10] Z. Boulahia, A. Wakif, R. Sehaqui, Heat transfer and cu-water nanofluid flow in a ventilated cavity having central cooling cylinder and heated from the below considering three different outlet port locations. Front Heat Mass Transf 11 (2018). https://doi.org/10.5098/hmt.11.11.

DOI: 10.5098/hmt.11.11

Google Scholar

[11] A. Wakif, Z. Boulahia, S. R. Mishra, M.M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model. Eur Phys J Plus 133, (2018)181.

DOI: 10.1140/epjp/i2018-12037-7

Google Scholar

[12] H. Vaidya, K. V. Prasad, K. Vajravelu, U. B. Vishwanatha, G. Manjunatha, Z. B. Neelufer, Buongiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties, J Nanofluids 8(2) (2018) 399-406.

DOI: 10.1166/jon.2019.1594

Google Scholar

[13] O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences. 50(7) (2011) 1326-1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[14] O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transfer. 62 (2013) 526-533.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.049

Google Scholar

[15] S. Shaw, S.S. Sen, M.K. Nayak, O.D. Makinde, Boundary layer non-linear convection flow of Sisko-nanofluid with melting heat transfer over an inclined permeable electromagnetic sheet, Journal of Nanofluids, 8 (5) (2019) 917-928.

DOI: 10.1166/jon.2019.1649

Google Scholar

[16] O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(4) (2017) 695–703.

DOI: 10.1177/0954408916629506

Google Scholar

[17] O. D. Makinde, V. Nagendramma, C.S.K. Raju, A. Leelarathnam, Effect of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum. 378 (2017) 28-38.

DOI: 10.4028/www.scientific.net/ddf.378.28

Google Scholar

[18] O.D. Makinde, F. Mabood, M.S. Ibrahim, Chemically reacting on MHD boundary layer flow of nanofluid over a non-linear stretching sheet with heat source/sink and thermal radiation, Thermal Science, 22(1B) (2018) 495-506.

DOI: 10.2298/tsci151003284m

Google Scholar

[19] O. D. Makinde, A. Aziz, MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition, International Journal of Thermal Sciences, 49 (2010) 1813-1820.

DOI: 10.1016/j.ijthermalsci.2010.05.015

Google Scholar

[20] M. R. Eid, O.D. Makinde, Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species, International Journal of Chemical Reactor Engineering, 16(9) (2018).

DOI: 10.1515/ijcre-2017-0212

Google Scholar

[21] O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, International Journal of Nonlinear Sciences and Numerical Simulation, 19(2/3) (2018) 93–106.

DOI: 10.1515/ijnsns-2016-0087

Google Scholar

[22] I. Y. Seini, O. D. Makinde, Boundary layer flow near stagnation-points on a vertical surface with slip in the presence of transverse magnetic field, International Journal of Numerical Methods for Heat and Fluid Flow, 24(3) (2014) 643-653.

DOI: 10.1108/hff-04-2012-0094

Google Scholar

[23] S. A. Shehzad, A. Alsaedi, T. Hayat, M. S. Alhuthali, Three-dimensional flow of an Oldroyed-B fluid with variable thermal conductivity and heat generation/absorption." PLoS One. 8(11) (2013) e78240.

DOI: 10.1371/journal.pone.0078240

Google Scholar

[24] W. A. Khan, M. Khan, R. Malik, Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption, PLoS One. 9(8) (2014) e105107.

DOI: 10.1371/journal.pone.0105107

Google Scholar

[25] M. Ramzan, M. Farooq, M. S. Alhothuali, H. M. Malaikah, W. Cui, T. Hayat, Three-dimensional flow of an Oldroyd-B fluid with Newtonian heating J Nume Meth Heat Fluid flow. 25 (2014) 68-85.

DOI: 10.1108/hff-03-2014-0070

Google Scholar

[26] A. Farooq,A. Ramzan,A. C. Benim, Soret and Dufour effects on three dimensional Oldroyd-B fluid, Phys. A: Stat. Mech. its Appl. 503 (2018) 345-354.

DOI: 10.1016/j.physa.2018.02.204

Google Scholar

[27] T. W. Pan, R. Glowinski, Numerical study of spheres settling in Oldroyd-B fluids. Phys. Fluids 30 (2018) 113102.

DOI: 10.1063/1.5032324

Google Scholar

[28] S. Nadeem, R. Ul Haq, N. S. Akbar, C. Lee, Z. H. Khan, Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet, PLoS One 8 (2013) e69811.

DOI: 10.1371/journal.pone.0069811

Google Scholar

[29] T. Hayat, T. Muhammad, S. A. Shehzad, M. S. Alhuthali, J. Lu, Impact of magnetic field in three-dimensional flow of an Oldroyd-B nanofluid, J. Mol. Liq. 212 (2015) 272-82.

DOI: 10.1016/j.molliq.2015.09.023

Google Scholar

[30] T. Hayat, T. Hussain, S. A. Shehzad, A. Alsaedi, Flow of Oldroyd-B fluid with nanoparticles and thermal radiation. Appl. Math. Mech.36 (2015a) 69–80.

DOI: 10.1007/s10483-015-1896-9

Google Scholar

[31] S. A. Shehzad, Z. Abdullah, F. M. Abbasi, T. Hayat, A. Alsaedi, Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface J. Magnetism Magnetic Materials 399 (2016) 97–108.

DOI: 10.1016/j.jmmm.2015.09.001

Google Scholar

[32] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyed-B nanofluid flow induced by a stretching sheet with heat generation / absorption Int. J. Therm. Sci. 111(2017) 274-288.

DOI: 10.1016/j.ijthermalsci.2016.08.009

Google Scholar

[33] E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer. McGraw-Hill, New York (1972).

Google Scholar

[34] S. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations. Comm Non-liner Sci Num Simul 15 (2010) 2003-2016.

Google Scholar

[35] R. A. Van Gorder, Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations. Num. Alg. 2018. https://doi.org/10.1007/s11075-018-0540-0.

DOI: 10.1007/s11075-018-0540-0

Google Scholar