[1]
K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int J Heat Mass Transfer 46 (2003) 3639-3653.
DOI: 10.1016/s0017-9310(03)00156-x
Google Scholar
[2]
Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int J Heat Fluid Flow 21 (2000) 58-64.
DOI: 10.1016/s0142-727x(99)00067-3
Google Scholar
[3]
J. Buongiorno, Convective transport in nanofluids, J. Heat Transf 128 (2006) 240-250.
Google Scholar
[4]
M. A. Sheremet, I. Pop, Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno's mathematical model, Int J Heat Mass Transf 79 (2014) 137–145.
DOI: 10.1016/j.ijheatmasstransfer.2014.07.092
Google Scholar
[5]
A. J. Chamkha, V. I. Miroshnichenko, A. Mikhail, M. A. Sheremet, Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity, J Therm Sci Eng Appl 9(4) (2017) 041004.
DOI: 10.1115/1.4036203
Google Scholar
[6]
K. V. Prasad, K.Vajravelu, H. Vaidya, MHD Casson nanofluid flow and heat transfer at a stretching sheet with variable thickness, J Nanofluids 5 (2016) 423-435.
DOI: 10.1166/jon.2016.1228
Google Scholar
[7]
K. V. Prasad, K. Vajravelu, H. Vaidya, R. A. Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results Phys. 7 (2017) 1462–1474.
DOI: 10.1016/j.rinp.2017.03.022
Google Scholar
[8]
K. V. Prasad, H. Vaidya, K. Vajravelu, V. Ramanjini, Analytical study of Cattaneo-Christov heat flux model for Williamson-nanofluid flow over a slender elastic sheet with variable thickness, J Nanofluids 7 (2018) 583–594.
DOI: 10.1166/jon.2018.1475
Google Scholar
[9]
K. Vajravelu, K. V. Prasad, C-O Ng, H. Vaidya, MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid properties and transpiration, Int J Mech Materials Eng. 12(9) (2017) 1-14 https://doi.org/10.1186%2Fs40712-017-0076-4.
DOI: 10.1186/s40712-017-0076-4
Google Scholar
[10]
Z. Boulahia, A. Wakif, R. Sehaqui, Heat transfer and cu-water nanofluid flow in a ventilated cavity having central cooling cylinder and heated from the below considering three different outlet port locations. Front Heat Mass Transf 11 (2018). https://doi.org/10.5098/hmt.11.11.
DOI: 10.5098/hmt.11.11
Google Scholar
[11]
A. Wakif, Z. Boulahia, S. R. Mishra, M.M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model. Eur Phys J Plus 133, (2018)181.
DOI: 10.1140/epjp/i2018-12037-7
Google Scholar
[12]
H. Vaidya, K. V. Prasad, K. Vajravelu, U. B. Vishwanatha, G. Manjunatha, Z. B. Neelufer, Buongiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties, J Nanofluids 8(2) (2018) 399-406.
DOI: 10.1166/jon.2019.1594
Google Scholar
[13]
O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences. 50(7) (2011) 1326-1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[14]
O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transfer. 62 (2013) 526-533.
DOI: 10.1016/j.ijheatmasstransfer.2013.03.049
Google Scholar
[15]
S. Shaw, S.S. Sen, M.K. Nayak, O.D. Makinde, Boundary layer non-linear convection flow of Sisko-nanofluid with melting heat transfer over an inclined permeable electromagnetic sheet, Journal of Nanofluids, 8 (5) (2019) 917-928.
DOI: 10.1166/jon.2019.1649
Google Scholar
[16]
O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(4) (2017) 695–703.
DOI: 10.1177/0954408916629506
Google Scholar
[17]
O. D. Makinde, V. Nagendramma, C.S.K. Raju, A. Leelarathnam, Effect of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder, Defect and Diffusion Forum. 378 (2017) 28-38.
DOI: 10.4028/www.scientific.net/ddf.378.28
Google Scholar
[18]
O.D. Makinde, F. Mabood, M.S. Ibrahim, Chemically reacting on MHD boundary layer flow of nanofluid over a non-linear stretching sheet with heat source/sink and thermal radiation, Thermal Science, 22(1B) (2018) 495-506.
DOI: 10.2298/tsci151003284m
Google Scholar
[19]
O. D. Makinde, A. Aziz, MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition, International Journal of Thermal Sciences, 49 (2010) 1813-1820.
DOI: 10.1016/j.ijthermalsci.2010.05.015
Google Scholar
[20]
M. R. Eid, O.D. Makinde, Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species, International Journal of Chemical Reactor Engineering, 16(9) (2018).
DOI: 10.1515/ijcre-2017-0212
Google Scholar
[21]
O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, International Journal of Nonlinear Sciences and Numerical Simulation, 19(2/3) (2018) 93–106.
DOI: 10.1515/ijnsns-2016-0087
Google Scholar
[22]
I. Y. Seini, O. D. Makinde, Boundary layer flow near stagnation-points on a vertical surface with slip in the presence of transverse magnetic field, International Journal of Numerical Methods for Heat and Fluid Flow, 24(3) (2014) 643-653.
DOI: 10.1108/hff-04-2012-0094
Google Scholar
[23]
S. A. Shehzad, A. Alsaedi, T. Hayat, M. S. Alhuthali, Three-dimensional flow of an Oldroyed-B fluid with variable thermal conductivity and heat generation/absorption." PLoS One. 8(11) (2013) e78240.
DOI: 10.1371/journal.pone.0078240
Google Scholar
[24]
W. A. Khan, M. Khan, R. Malik, Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption, PLoS One. 9(8) (2014) e105107.
DOI: 10.1371/journal.pone.0105107
Google Scholar
[25]
M. Ramzan, M. Farooq, M. S. Alhothuali, H. M. Malaikah, W. Cui, T. Hayat, Three-dimensional flow of an Oldroyd-B fluid with Newtonian heating J Nume Meth Heat Fluid flow. 25 (2014) 68-85.
DOI: 10.1108/hff-03-2014-0070
Google Scholar
[26]
A. Farooq,A. Ramzan,A. C. Benim, Soret and Dufour effects on three dimensional Oldroyd-B fluid, Phys. A: Stat. Mech. its Appl. 503 (2018) 345-354.
DOI: 10.1016/j.physa.2018.02.204
Google Scholar
[27]
T. W. Pan, R. Glowinski, Numerical study of spheres settling in Oldroyd-B fluids. Phys. Fluids 30 (2018) 113102.
DOI: 10.1063/1.5032324
Google Scholar
[28]
S. Nadeem, R. Ul Haq, N. S. Akbar, C. Lee, Z. H. Khan, Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet, PLoS One 8 (2013) e69811.
DOI: 10.1371/journal.pone.0069811
Google Scholar
[29]
T. Hayat, T. Muhammad, S. A. Shehzad, M. S. Alhuthali, J. Lu, Impact of magnetic field in three-dimensional flow of an Oldroyd-B nanofluid, J. Mol. Liq. 212 (2015) 272-82.
DOI: 10.1016/j.molliq.2015.09.023
Google Scholar
[30]
T. Hayat, T. Hussain, S. A. Shehzad, A. Alsaedi, Flow of Oldroyd-B fluid with nanoparticles and thermal radiation. Appl. Math. Mech.36 (2015a) 69–80.
DOI: 10.1007/s10483-015-1896-9
Google Scholar
[31]
S. A. Shehzad, Z. Abdullah, F. M. Abbasi, T. Hayat, A. Alsaedi, Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface J. Magnetism Magnetic Materials 399 (2016) 97–108.
DOI: 10.1016/j.jmmm.2015.09.001
Google Scholar
[32]
T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyed-B nanofluid flow induced by a stretching sheet with heat generation / absorption Int. J. Therm. Sci. 111(2017) 274-288.
DOI: 10.1016/j.ijthermalsci.2016.08.009
Google Scholar
[33]
E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer. McGraw-Hill, New York (1972).
Google Scholar
[34]
S. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations. Comm Non-liner Sci Num Simul 15 (2010) 2003-2016.
Google Scholar
[35]
R. A. Van Gorder, Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations. Num. Alg. 2018. https://doi.org/10.1007/s11075-018-0540-0.
DOI: 10.1007/s11075-018-0540-0
Google Scholar