Influence of Homogeneous and Heterogeneous Chemical Reactions and Variable Thermal Conductivity on the MHD Maxwell Fluid Flow due to a Surface of Variable Thickness

Article Preview

Abstract:

In this report, the effects of homogeneous-heterogeneous autocatalytic chemical reaction together with the variable thermal conductivity in the Maxwell fluid flow due to nonlinear surface of variable thickness are investigated. Thermal radiation and heat generation / absorption effects are also incorporated in the analysis. Appropriate scaling analysis is implemented to reduce the mathematical model describing the physics of the problem in to a set of nonlinear differential equations and are subsequently solved computationally. Graphical illustrations indicating the effect of pertinent parameters on momentum, thermal and solutal boundary layers are presented and discussed. The study reveals that velocity distribution shows a decreasing (increasing) tendency for larger values of wall thickness parameter when the velocity power law index is less (greater) than unity. The concentration of the homogeneous bulk fluid with catalyst at the surface decreases with increasing chemical reaction rate parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-163

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow: I. Equal diffusivities. Fluid Dynamics Res., 16 (1955) 311-333.

DOI: 10.1016/0169-5983(95)00015-6

Google Scholar

[2] M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow: II Different diffusivities for reactant and auto catalyst. Fluid Dynamics Res., 16 (1955) 333-359.

DOI: 10.1016/0169-5983(95)90813-h

Google Scholar

[3] T. Hayat, M. Imtiaz, S. Almezal, Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Advances, 5 (2015) 107209.

DOI: 10.1063/1.4933084

Google Scholar

[4] S. Rana, R. Mehmood, N.S. Akbar, Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous-heterogeneous reactions. J. Mole. Liq., 222 (2016) 1010-1019.

DOI: 10.1016/j.molliq.2016.07.137

Google Scholar

[5] I.L. Animasaun, C.S.K. Raju, N. Sandeep, Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic field and nonlinear thermal radiation. Alexandria Eng. J., 55 (2016) 1595-1606.

DOI: 10.1016/j.aej.2016.01.018

Google Scholar

[6] B.J. Gireesha, P.B.S. Kumar, B. Mahanthesh, S.A. Shehzad, A. Rauf, Nonlinear 3D flow of Casson-Carreau fluids with homogeneous-heterogeneous reactions: A comparative study. Results Phys., 7 (2017) 2762-2770.

DOI: 10.1016/j.rinp.2017.07.060

Google Scholar

[7] K. Vajravelu, R. Li, M. Dewasurendra, J. Benarroch, N. Ossi, Y. Zhang, M. Sammarco, K.V. Prasad, Analysis of MHD boundary layer flow of an upper-convected Maxwell fluid with homogeneous-heterogeneous chemical reactions. ISPACS, 2 (2017) 202-216.

DOI: 10.5899/2017/cna-00324

Google Scholar

[8] M. Ramzan, M. Bilal, J.D. Chung, Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo-Christov heat flux. 223 (2016) 1284-1290.

DOI: 10.1016/j.molliq.2016.09.046

Google Scholar

[9] Hashim, M. Khan, On Cattaneo-Christov heat flux model for Carreau fluid flow over a slandering sheet. Results in Physics, 7 (2017) 310-319.

DOI: 10.1016/j.rinp.2016.12.031

Google Scholar

[10] A. Sarkar, P.K. Kundu, Exploring the Cattaneo-Christov heat flux phenomenon on a Maxwell-type nanofluid coexisting with homogeneous/heterogeneous reactions. European Phys. J. Plus, 132 (2017) 534.

DOI: 10.1140/epjp/i2017-11797-8

Google Scholar

[11] T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness. Appl. Math. Comp., 218 (2012) 7241-7252.

DOI: 10.1016/j.amc.2011.12.094

Google Scholar

[12] T.M. Ajayi, A.J. Omowaye, I.L. Animasaun, Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis. Int. J. Eng. Res. Africa, 28 (2017) 73-89.

DOI: 10.4028/www.scientific.net/jera.28.73

Google Scholar

[13] Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness, J. Comp. Design Eng., 5 (2018) 232-242.

DOI: 10.1016/j.jcde.2017.09.001

Google Scholar

[14] M.A.E. Elbashbeshy, H.G. Asker, K.M. Abdelgaberc, E.A. Sayed, Heat transfer over a stretching surface with variable thickness embedded in porous medium in the presence of Maxwell fluid. Journal of Mechanical Engineering, 7(3) (2018), 1000307 (10pages).

DOI: 10.4172/2168-9873.1000307

Google Scholar

[15] P.B. Sampath Kumar, B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, Radiative nonlinear 3D flow of Ferrofluid with Joule heating, convective condition and Coriolis force. Therm. Sci. Eng. Progress, 3 (2017) 88-94.

DOI: 10.1016/j.tsep.2017.06.006

Google Scholar

[16] D. Pal, G. Mandal, Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int. J. Mech. Sci., 126 (2017) 303-313.

DOI: 10.1016/j.ijmecsci.2016.12.023

Google Scholar

[17] C. Srinivas Reddy, N. Kishan, M.M. Rashidi, MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A. Razmadze Mathematical Institute, 171 (2017) 195-211.

DOI: 10.1016/j.trmi.2017.02.004

Google Scholar

[18] A. Dawar, Z. Shah, I. Muhammad, W. Khan, S. Islam, G. Taza, Impact of thermal radiation and heat source/sink on Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface. Math. Comput. Appl., 23 (2018) 1-20.

DOI: 10.3390/mca23020020

Google Scholar

[19] S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, O.D. Makinde, Heterogeneous and homogeneous reaction analysis on MHD Oldroyd-B fluid with Cattaneo-Christov heat flux model and convective heating. Defect and Diffusion Forum, 387 (2018) 194-206.

DOI: 10.4028/www.scientific.net/ddf.387.194

Google Scholar

[20] M.K. Nayak, A.K.A. Hakeem, O.D. Makinde, Influence of Cattaneo-Christov heat flux model on mixed convection flow of third grade nanofluid over an inclined stretched Riga plate. Defect Diffusion Forum, 387 (2018) 121-134.

DOI: 10.4028/www.scientific.net/ddf.387.121

Google Scholar

[21] S.G. Kumar, S.V.K. Varma, P.D. Prasad, C.S.K. Raju, O.D. Makinde, R. Sharma, MHD reacting and radiating 3-D flow of Maxwell fluid past a stretching sheet with heat source/sink and Soret effects in a porous medium. Defect and Diffusion Forum, 387 (2018) 145-156.

DOI: 10.4028/www.scientific.net/ddf.387.145

Google Scholar

[22] N. Tarakaramu, P.V. Satya Narayana, Nonlinear thermal radiation and Joule heating effects on MHD stagnation point flow of nanofluid over a convectively heated stretching surface. J. Nanofluids, 8(5) (2019) 1066-1075.

DOI: 10.1166/jon.2019.1651

Google Scholar

[23] S.M. Ibrahim, P.V. Kumar, O.D. Makinde, Chemical reaction and radiation effects on non-Newtonian fluid flow over a stretching sheet with non-niform thickness and heat source. Defect and Diffusion Forum, 387 (2018) 319-331.

DOI: 10.4028/www.scientific.net/ddf.387.319

Google Scholar

[24] P.V. Satya Narayan, Nainaru Tarakaramu, O.D. Makinde, B. Venkateswarlu, G. Sarojamma, MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface. Defect Diffusion Forum, 387 (2018) 106-120.

DOI: 10.4028/www.scientific.net/ddf.387.106

Google Scholar

[25] O.D. Makinde, P. Sibanda, Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation.Int. J. Numerical Methods Heat Fluid Flow, 21(6) (2011) 779-792.

DOI: 10.1108/09615531111148509

Google Scholar

[26] B. Venkateswarlu, P.V. Satya Narayana, N. Tarakaramu, Melting and viscous dissipation effects on MHD flow over a moving surface with constant heat source. Transactions A. Razmadze Math. Inst. 172 (2018) 619-630.

DOI: 10.1016/j.trmi.2018.03.007

Google Scholar

[27] O.D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chemical Engineering Communications, 198 (4) (2011) 590-608.

DOI: 10.1080/00986445.2010.500151

Google Scholar

[28] P.V. Satya Narayana, N. Tarakaramu, S.M. Akshit, J.P. Ghori, MHD flow and heat transfer of an Eyring-Powell fluid over a linear stretching sheet with viscous dissipation-A numerical study. Frontiers Heat Mass Transfer 9(9) (2017) 1-5.

DOI: 10.5098/hmt.9.9

Google Scholar