[1]
M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow: I. Equal diffusivities. Fluid Dynamics Res., 16 (1955) 311-333.
DOI: 10.1016/0169-5983(95)00015-6
Google Scholar
[2]
M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow: II Different diffusivities for reactant and auto catalyst. Fluid Dynamics Res., 16 (1955) 333-359.
DOI: 10.1016/0169-5983(95)90813-h
Google Scholar
[3]
T. Hayat, M. Imtiaz, S. Almezal, Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Advances, 5 (2015) 107209.
DOI: 10.1063/1.4933084
Google Scholar
[4]
S. Rana, R. Mehmood, N.S. Akbar, Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous-heterogeneous reactions. J. Mole. Liq., 222 (2016) 1010-1019.
DOI: 10.1016/j.molliq.2016.07.137
Google Scholar
[5]
I.L. Animasaun, C.S.K. Raju, N. Sandeep, Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic field and nonlinear thermal radiation. Alexandria Eng. J., 55 (2016) 1595-1606.
DOI: 10.1016/j.aej.2016.01.018
Google Scholar
[6]
B.J. Gireesha, P.B.S. Kumar, B. Mahanthesh, S.A. Shehzad, A. Rauf, Nonlinear 3D flow of Casson-Carreau fluids with homogeneous-heterogeneous reactions: A comparative study. Results Phys., 7 (2017) 2762-2770.
DOI: 10.1016/j.rinp.2017.07.060
Google Scholar
[7]
K. Vajravelu, R. Li, M. Dewasurendra, J. Benarroch, N. Ossi, Y. Zhang, M. Sammarco, K.V. Prasad, Analysis of MHD boundary layer flow of an upper-convected Maxwell fluid with homogeneous-heterogeneous chemical reactions. ISPACS, 2 (2017) 202-216.
DOI: 10.5899/2017/cna-00324
Google Scholar
[8]
M. Ramzan, M. Bilal, J.D. Chung, Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo-Christov heat flux. 223 (2016) 1284-1290.
DOI: 10.1016/j.molliq.2016.09.046
Google Scholar
[9]
Hashim, M. Khan, On Cattaneo-Christov heat flux model for Carreau fluid flow over a slandering sheet. Results in Physics, 7 (2017) 310-319.
DOI: 10.1016/j.rinp.2016.12.031
Google Scholar
[10]
A. Sarkar, P.K. Kundu, Exploring the Cattaneo-Christov heat flux phenomenon on a Maxwell-type nanofluid coexisting with homogeneous/heterogeneous reactions. European Phys. J. Plus, 132 (2017) 534.
DOI: 10.1140/epjp/i2017-11797-8
Google Scholar
[11]
T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness. Appl. Math. Comp., 218 (2012) 7241-7252.
DOI: 10.1016/j.amc.2011.12.094
Google Scholar
[12]
T.M. Ajayi, A.J. Omowaye, I.L. Animasaun, Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis. Int. J. Eng. Res. Africa, 28 (2017) 73-89.
DOI: 10.4028/www.scientific.net/jera.28.73
Google Scholar
[13]
Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness, J. Comp. Design Eng., 5 (2018) 232-242.
DOI: 10.1016/j.jcde.2017.09.001
Google Scholar
[14]
M.A.E. Elbashbeshy, H.G. Asker, K.M. Abdelgaberc, E.A. Sayed, Heat transfer over a stretching surface with variable thickness embedded in porous medium in the presence of Maxwell fluid. Journal of Mechanical Engineering, 7(3) (2018), 1000307 (10pages).
DOI: 10.4172/2168-9873.1000307
Google Scholar
[15]
P.B. Sampath Kumar, B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, Radiative nonlinear 3D flow of Ferrofluid with Joule heating, convective condition and Coriolis force. Therm. Sci. Eng. Progress, 3 (2017) 88-94.
DOI: 10.1016/j.tsep.2017.06.006
Google Scholar
[16]
D. Pal, G. Mandal, Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int. J. Mech. Sci., 126 (2017) 303-313.
DOI: 10.1016/j.ijmecsci.2016.12.023
Google Scholar
[17]
C. Srinivas Reddy, N. Kishan, M.M. Rashidi, MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A. Razmadze Mathematical Institute, 171 (2017) 195-211.
DOI: 10.1016/j.trmi.2017.02.004
Google Scholar
[18]
A. Dawar, Z. Shah, I. Muhammad, W. Khan, S. Islam, G. Taza, Impact of thermal radiation and heat source/sink on Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface. Math. Comput. Appl., 23 (2018) 1-20.
DOI: 10.3390/mca23020020
Google Scholar
[19]
S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, O.D. Makinde, Heterogeneous and homogeneous reaction analysis on MHD Oldroyd-B fluid with Cattaneo-Christov heat flux model and convective heating. Defect and Diffusion Forum, 387 (2018) 194-206.
DOI: 10.4028/www.scientific.net/ddf.387.194
Google Scholar
[20]
M.K. Nayak, A.K.A. Hakeem, O.D. Makinde, Influence of Cattaneo-Christov heat flux model on mixed convection flow of third grade nanofluid over an inclined stretched Riga plate. Defect Diffusion Forum, 387 (2018) 121-134.
DOI: 10.4028/www.scientific.net/ddf.387.121
Google Scholar
[21]
S.G. Kumar, S.V.K. Varma, P.D. Prasad, C.S.K. Raju, O.D. Makinde, R. Sharma, MHD reacting and radiating 3-D flow of Maxwell fluid past a stretching sheet with heat source/sink and Soret effects in a porous medium. Defect and Diffusion Forum, 387 (2018) 145-156.
DOI: 10.4028/www.scientific.net/ddf.387.145
Google Scholar
[22]
N. Tarakaramu, P.V. Satya Narayana, Nonlinear thermal radiation and Joule heating effects on MHD stagnation point flow of nanofluid over a convectively heated stretching surface. J. Nanofluids, 8(5) (2019) 1066-1075.
DOI: 10.1166/jon.2019.1651
Google Scholar
[23]
S.M. Ibrahim, P.V. Kumar, O.D. Makinde, Chemical reaction and radiation effects on non-Newtonian fluid flow over a stretching sheet with non-niform thickness and heat source. Defect and Diffusion Forum, 387 (2018) 319-331.
DOI: 10.4028/www.scientific.net/ddf.387.319
Google Scholar
[24]
P.V. Satya Narayan, Nainaru Tarakaramu, O.D. Makinde, B. Venkateswarlu, G. Sarojamma, MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface. Defect Diffusion Forum, 387 (2018) 106-120.
DOI: 10.4028/www.scientific.net/ddf.387.106
Google Scholar
[25]
O.D. Makinde, P. Sibanda, Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation.Int. J. Numerical Methods Heat Fluid Flow, 21(6) (2011) 779-792.
DOI: 10.1108/09615531111148509
Google Scholar
[26]
B. Venkateswarlu, P.V. Satya Narayana, N. Tarakaramu, Melting and viscous dissipation effects on MHD flow over a moving surface with constant heat source. Transactions A. Razmadze Math. Inst. 172 (2018) 619-630.
DOI: 10.1016/j.trmi.2018.03.007
Google Scholar
[27]
O.D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chemical Engineering Communications, 198 (4) (2011) 590-608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[28]
P.V. Satya Narayana, N. Tarakaramu, S.M. Akshit, J.P. Ghori, MHD flow and heat transfer of an Eyring-Powell fluid over a linear stretching sheet with viscous dissipation-A numerical study. Frontiers Heat Mass Transfer 9(9) (2017) 1-5.
DOI: 10.5098/hmt.9.9
Google Scholar