[1]
N.F. Okechi, M. Jalil, M., S. Asghar, Flow of viscous fluid along an exponentially stretching curved surface, Res. Phys., 7 (2017) 2851-2854.
DOI: 10.1016/j.rinp.2017.07.059
Google Scholar
[2]
M. Sheikholeslami, M. Hatami, D.D. Ganji, Micropolar fluid flow and heat transfer in a permeable channel using analytical method, J. Mol. Liq., 194 (2014) 30-36.
DOI: 10.1016/j.molliq.2014.01.005
Google Scholar
[3]
A. Rehman, S.Nadeem, M.Y. Malik, Boundary layer stagnation-point flow of a third-grade fluid over an exponentially stretching sheet, Braz. J. Chem. Eng. 30 (2013) 611-618.
DOI: 10.1590/s0104-66322013000300018
Google Scholar
[4]
S.H.M. Saleh, N.M. Arifin, R. Nazar, I. Pop, Unsteady Micropolar fluid over a permeable curved stretching shrinking surface, Math. Prob. Eng., 2017 (2017)Article ID 3085249.
DOI: 10.1155/2017/3085249
Google Scholar
[5]
M. Naveed, Z. Abbas, N. Sajid, J. Hasnain, Dual solutions in hydromagnetic viscous fluid flow past a shrinking curved surface, Arab. J. Sci. Eng., 43 (2018) 1189-1194.
DOI: 10.1007/s13369-017-2772-z
Google Scholar
[6]
K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink, Heat Transf. Res. 50 (2019) 581-603.
DOI: 10.1615/heattransres.2018025939
Google Scholar
[7]
K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink, Int. J. Fluid Mech. Res., In Press, (2019).
DOI: 10.1615/interjfluidmechres.2018025940
Google Scholar
[8]
Z. Abbas, M. Naveed, M. Sajid, Heat transfer for stretching flow over a curved surface with magnetic field, J. Eng. Thermophys. 22(4) (2013) 337-345.
DOI: 10.1134/s1810232813040061
Google Scholar
[9]
A.S. Alshomrani, T. Gul, A convective study of Al2O3-H2O and Cu-H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation, Eur. Phys. J. Plus, 132 (2017) DOI 10.1140/epjp/i2017-11740-1.
DOI: 10.1140/epjp/i2017-11740-1
Google Scholar
[10]
N. Sandeep, A. Malvandi, Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles, Adv. Powder Tech. 27 (2016) 2448-2456, (2016).
DOI: 10.1016/j.apt.2016.08.023
Google Scholar
[11]
K. Anantha Kumar, B. Ramadevi, V. Sugunamma, Impact of Lorentz force on unsteady bio convective flow of Carreau fluid across a variable thickness sheet with non-Fourier heat flux model, Def. Diff. Forum, 387 (2018) 474-497.
DOI: 10.4028/www.scientific.net/ddf.387.474
Google Scholar
[12]
K. Anantha Kumar, V. Sugunamma, N. Sandeep, J.V.R. Reddy, Impact of Brownian motion and thermophoresis on bio convective flow of nanoliquids past a variable thickness surface with slip effects, Multi. Model. Mater. Struc. 15 (2019) 103-132.
DOI: 10.1108/mmms-02-2018-0023
Google Scholar
[13]
M. Naveed, Z. Abbas, M. Sajid, MHD flow of micropolar fluid due to a curved stretching surface with thermal radiation, J. Appl. Fluid Mech. 9(1) (2016) 131-138.
DOI: 10.18869/acadpub.jafm.68.224.23967
Google Scholar
[14]
N. Sandeep, C. Sulochana, B. R. Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface, Eng. Sci. Tech., Int. J., 19 (2016) 227-240, (2016).
DOI: 10.1016/j.jestch.2015.06.004
Google Scholar
[15]
Z. Abbas, M. Naveed, M. Sajid, Hydrodynamic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation, J. Mol. Liq. 215 (2016) 756-762.
DOI: 10.1016/j.molliq.2016.01.012
Google Scholar
[16]
T. Hayat, M.M. Rashidi, M. Imtiaz, A. Alsaedi, MHD convective flow due to a curved surface with thermal radiation and chemical reaction, J. Mol. Liq., 225 (2017) 482-489.
DOI: 10.1016/j.molliq.2016.11.096
Google Scholar
[17]
A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation, J. Mol. Liq. 215 (2016) 549-554.
DOI: 10.1016/j.molliq.2015.12.110
Google Scholar
[18]
K Anantha Kumar, V. Sugunamma and N. Sandeep, Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface, J. Non-Equil. Thermodyn (2018) https://doi.org/10.1515/jnet-2018-0022.
DOI: 10.1515/jnet-2018-0022
Google Scholar
[19]
T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, Homogeneous-Heterogeneous reactions and heat source/sink effects in MHD flow of micropolar fluid with Newtonian heating in a curved channel, J. Mol. Liq. 223 (2016)469-488.
DOI: 10.1016/j.molliq.2016.08.067
Google Scholar
[20]
K. Mehmood, S. Hussain, M. Sagheet, Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid, AIP Adv. 6 (2016) https://doi.org/10.1063/1.4955157.
DOI: 10.1063/1.4955157
Google Scholar
[21]
K. Gangadhar, K.R. Venkata, O.D. Makinde, B.R. Kumar, MHD flow of a Carreau fluid past a stretching cylinder with Cattaneo-Christov heat flux using spectral relaxation method, Defect and Diffusion Forum, 387 (2018) 91–105.
DOI: 10.4028/www.scientific.net/ddf.387.91
Google Scholar
[22]
T.S. Kumar, B.R. Kumar, O.D. Makinde, A.G. Vijaya Kumar, Magneto-convective heat transfer in micropolar nanofluid over a stretching sheet with non-uniform heat source/sink, Defect and Diffusion Forum, 387 (2018) 78–90.
DOI: 10.4028/www.scientific.net/ddf.387.78
Google Scholar
[23]
A. Tetbirt, M. N. Bouaziz, M. T. Abbes, Numerical study of magnetic field effect on the velocity distribution field in a micro/macro-scale of a micropolar and viscous fluid in verticle channel, J. Mol. Liq. 216 (2016) 103-110.
DOI: 10.1016/j.molliq.2015.12.088
Google Scholar
[24]
M. Ramzan, M. Farooq, T. Hayat, J. D. Chung, Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition, J. Mol. Liq., 221 (2016) 394-400.
DOI: 10.1016/j.molliq.2016.05.091
Google Scholar
[25]
T.C. Chiam, Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta Mech., 129(1/2) (1982) 63-72.
DOI: 10.1007/bf01379650
Google Scholar
[26]
M.S. Abel, N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Model. 32 (2008) 1965-1983.
DOI: 10.1016/j.apm.2007.06.038
Google Scholar
[27]
S. K. Adegbie, O. K. Kọrikọ, I. L. Animasaun, Melting heat transfer effects on stagnation point flow of micropolar fluid with variable dynamic viscosity and thermal conductivity at constant vortex viscosity. Journal of the Nigerian Mathematical Society, 36 (1) (2016) 34-47.
DOI: 10.1016/j.jnnms.2015.06.004
Google Scholar
[28]
M.Y. Malik, M. Bibi, F. Khan, T. Salahuddin, Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption, AIP Adv., 6 (2016) Article ID: 035101.
DOI: 10.1063/1.4943398
Google Scholar
[29]
K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, Multi. Mod. Mat. Str., (2018) DOI 10.1108/MMMS-12-2017-0151.
DOI: 10.1108/mmms-12-2017-0151
Google Scholar
[30]
D. Srinivasacharya, P. Jagadeeshwar, Effect of variable properties on the flow over an exponentially stretching sheet with convective thermal conditions, Model. Measure. Control B, 87, (2018) 7-14.
DOI: 10.18280/mmc_b.870102
Google Scholar
[31]
O.D. Makinde, I. L. Animasaun, Bio convection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution., Int. J. Therm. Sci. 109 (2016) 159-171.
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[32]
O.D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016) 733-743.
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[33]
O. D. Makinde, N. Sandeep, I.L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect Diff. Forum, 374 (2017) 67-82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar