Physical Aspects on MHD Micropolar Fluid Flow Past an Exponentially Stretching Curved Surface

Article Preview

Abstract:

The present analysis is composed of heat transfer characteristics on MHD free convective stagnated flow of micropolar liquid due to stretching of an exponential curved sheet. The flow is supposed to be time-independent and not turbulent. The impact of non-linear radiation, unequal heat source/sink, Joule heating and variable thermal conductivity are supposed. Appropriate alterations are mused to change the original PDEs as ordinary ones and then solved by shooting and fourth order Runge-Kutta-Fehlberg integration schemes. Graphs are outlined to inspect the impacts of sundry non-dimensional variables on the distributions of velocity, micro rotation and temperature. We discern that there is an augmentation in the fields of heat with Eckert number, nonlinear radiation and irregular hear parameters. Also it is motivating to comment that material parameter is a decreasing function of velocity. We establish the consequences in this analysis evidence to be extremely agreeable with the obtainable consequences.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-91

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.F. Okechi, M. Jalil, M., S. Asghar, Flow of viscous fluid along an exponentially stretching curved surface, Res. Phys., 7 (2017) 2851-2854.

DOI: 10.1016/j.rinp.2017.07.059

Google Scholar

[2] M. Sheikholeslami, M. Hatami, D.D. Ganji, Micropolar fluid flow and heat transfer in a permeable channel using analytical method, J. Mol. Liq., 194 (2014) 30-36.

DOI: 10.1016/j.molliq.2014.01.005

Google Scholar

[3] A. Rehman, S.Nadeem, M.Y. Malik, Boundary layer stagnation-point flow of a third-grade fluid over an exponentially stretching sheet, Braz. J. Chem. Eng. 30 (2013) 611-618.

DOI: 10.1590/s0104-66322013000300018

Google Scholar

[4] S.H.M. Saleh, N.M. Arifin, R. Nazar, I. Pop, Unsteady Micropolar fluid over a permeable curved stretching shrinking surface, Math. Prob. Eng., 2017 (2017)Article ID 3085249.

DOI: 10.1155/2017/3085249

Google Scholar

[5] M. Naveed, Z. Abbas, N. Sajid, J. Hasnain, Dual solutions in hydromagnetic viscous fluid flow past a shrinking curved surface, Arab. J. Sci. Eng., 43 (2018) 1189-1194.

DOI: 10.1007/s13369-017-2772-z

Google Scholar

[6] K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink, Heat Transf. Res. 50 (2019) 581-603.

DOI: 10.1615/heattransres.2018025939

Google Scholar

[7] K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink, Int. J. Fluid Mech. Res., In Press, (2019).

DOI: 10.1615/interjfluidmechres.2018025940

Google Scholar

[8] Z. Abbas, M. Naveed, M. Sajid, Heat transfer for stretching flow over a curved surface with magnetic field, J. Eng. Thermophys. 22(4) (2013) 337-345.

DOI: 10.1134/s1810232813040061

Google Scholar

[9] A.S. Alshomrani, T. Gul, A convective study of Al2O3-H2O and Cu-H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation, Eur. Phys. J. Plus, 132 (2017) DOI 10.1140/epjp/i2017-11740-1.

DOI: 10.1140/epjp/i2017-11740-1

Google Scholar

[10] N. Sandeep, A. Malvandi, Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles, Adv. Powder Tech. 27 (2016) 2448-2456, (2016).

DOI: 10.1016/j.apt.2016.08.023

Google Scholar

[11] K. Anantha Kumar, B. Ramadevi, V. Sugunamma, Impact of Lorentz force on unsteady bio convective flow of Carreau fluid across a variable thickness sheet with non-Fourier heat flux model, Def. Diff. Forum, 387 (2018) 474-497.

DOI: 10.4028/www.scientific.net/ddf.387.474

Google Scholar

[12] K. Anantha Kumar, V. Sugunamma, N. Sandeep, J.V.R. Reddy, Impact of Brownian motion and thermophoresis on bio convective flow of nanoliquids past a variable thickness surface with slip effects, Multi. Model. Mater. Struc. 15 (2019) 103-132.

DOI: 10.1108/mmms-02-2018-0023

Google Scholar

[13] M. Naveed, Z. Abbas, M. Sajid, MHD flow of micropolar fluid due to a curved stretching surface with thermal radiation, J. Appl. Fluid Mech. 9(1) (2016) 131-138.

DOI: 10.18869/acadpub.jafm.68.224.23967

Google Scholar

[14] N. Sandeep, C. Sulochana, B. R. Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface, Eng. Sci. Tech., Int. J., 19 (2016) 227-240, (2016).

DOI: 10.1016/j.jestch.2015.06.004

Google Scholar

[15] Z. Abbas, M. Naveed, M. Sajid, Hydrodynamic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation, J. Mol. Liq. 215 (2016) 756-762.

DOI: 10.1016/j.molliq.2016.01.012

Google Scholar

[16] T. Hayat, M.M. Rashidi, M. Imtiaz, A. Alsaedi, MHD convective flow due to a curved surface with thermal radiation and chemical reaction, J. Mol. Liq., 225 (2017) 482-489.

DOI: 10.1016/j.molliq.2016.11.096

Google Scholar

[17] A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation, J. Mol. Liq. 215 (2016) 549-554.

DOI: 10.1016/j.molliq.2015.12.110

Google Scholar

[18] K Anantha Kumar, V. Sugunamma and N. Sandeep, Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface, J. Non-Equil. Thermodyn (2018) https://doi.org/10.1515/jnet-2018-0022.

DOI: 10.1515/jnet-2018-0022

Google Scholar

[19] T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, Homogeneous-Heterogeneous reactions and heat source/sink effects in MHD flow of micropolar fluid with Newtonian heating in a curved channel, J. Mol. Liq. 223 (2016)469-488.

DOI: 10.1016/j.molliq.2016.08.067

Google Scholar

[20] K. Mehmood, S. Hussain, M. Sagheet, Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid, AIP Adv. 6 (2016) https://doi.org/10.1063/1.4955157.

DOI: 10.1063/1.4955157

Google Scholar

[21] K. Gangadhar, K.R. Venkata, O.D. Makinde, B.R. Kumar, MHD flow of a Carreau fluid past a stretching cylinder with Cattaneo-Christov heat flux using spectral relaxation method, Defect and Diffusion Forum, 387 (2018) 91–105.

DOI: 10.4028/www.scientific.net/ddf.387.91

Google Scholar

[22] T.S. Kumar, B.R. Kumar, O.D. Makinde, A.G. Vijaya Kumar, Magneto-convective heat transfer in micropolar nanofluid over a stretching sheet with non-uniform heat source/sink, Defect and Diffusion Forum, 387 (2018) 78–90.

DOI: 10.4028/www.scientific.net/ddf.387.78

Google Scholar

[23] A. Tetbirt, M. N. Bouaziz, M. T. Abbes, Numerical study of magnetic field effect on the velocity distribution field in a micro/macro-scale of a micropolar and viscous fluid in verticle channel, J. Mol. Liq. 216 (2016) 103-110.

DOI: 10.1016/j.molliq.2015.12.088

Google Scholar

[24] M. Ramzan, M. Farooq, T. Hayat, J. D. Chung, Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition, J. Mol. Liq., 221 (2016) 394-400.

DOI: 10.1016/j.molliq.2016.05.091

Google Scholar

[25] T.C. Chiam, Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta Mech., 129(1/2) (1982) 63-72.

DOI: 10.1007/bf01379650

Google Scholar

[26] M.S. Abel, N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Model. 32 (2008) 1965-1983.

DOI: 10.1016/j.apm.2007.06.038

Google Scholar

[27] S. K. Adegbie, O. K. Kọrikọ, I. L. Animasaun, Melting heat transfer effects on stagnation point flow of micropolar fluid with variable dynamic viscosity and thermal conductivity at constant vortex viscosity. Journal of the Nigerian Mathematical Society, 36 (1) (2016) 34-47.

DOI: 10.1016/j.jnnms.2015.06.004

Google Scholar

[28] M.Y. Malik, M. Bibi, F. Khan, T. Salahuddin, Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption, AIP Adv., 6 (2016) Article ID: 035101.

DOI: 10.1063/1.4943398

Google Scholar

[29] K. Anantha Kumar, J.V.R. Reddy, V. Sugunamma, N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, Multi. Mod. Mat. Str., (2018) DOI 10.1108/MMMS-12-2017-0151.

DOI: 10.1108/mmms-12-2017-0151

Google Scholar

[30] D. Srinivasacharya, P. Jagadeeshwar, Effect of variable properties on the flow over an exponentially stretching sheet with convective thermal conditions, Model. Measure. Control B, 87, (2018) 7-14.

DOI: 10.18280/mmc_b.870102

Google Scholar

[31] O.D. Makinde, I. L. Animasaun, Bio convection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution., Int. J. Therm. Sci. 109 (2016) 159-171.

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[32] O.D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016) 733-743.

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[33] O. D. Makinde, N. Sandeep, I.L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect Diff. Forum, 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar