[1]
V. M. Soundalgekhar, H. S. Takhar, Radiation effects on free convection flow past a semi-infinite vertical plate, Modeling Measurement and Control, B (51) (1993) 31 - 40.
Google Scholar
[2]
A. Raptis, C. Perdikis, Radiation and free convection flow past a moving plate, Appl. Mech and Eng, 4(4) (1999) 817 - 821.
Google Scholar
[3]
R. Muthucumaraswamy, G. S. Kumar, Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation, Theo. Appl. Mech, 31(1) (2004) 35 - 46.
DOI: 10.2298/tam0401035m
Google Scholar
[4]
O. D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium, Chemical Engineering Communications, 198 (4) (2011) 590-608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[5]
H. S. Takhar, R. S. Gorla, V. M. Soundalgekhar, Radiation effects on MHD free convection flow of a radiating gas past a semi-infinite vertical plate, Int. J. Num. Heat and Fluid Flow, 6(2) (1996) 77 - 83.
DOI: 10.1108/09615539610113118
Google Scholar
[6]
R. Muthucumaraswamy, B. Janakiraman, MHD and radiation effects on moving isothermal vertical plate with variable mass diffusion, Theo. Appl. Mech, 33(1) (2006) 17 - 29.
DOI: 10.2298/tam0601017m
Google Scholar
[7]
V. Rajesh, S. V. K. Varma, Radiation effects on MHD flow through a porous medium with variable temperature and mass diffusion, Int. J. Appl. Math and Mech, 6(1) (2010) 39 - 57.
Google Scholar
[8]
S. Das, B. Tarafdar, R.N. Jana, O.D. Makinde, Influence of rotational buoyancy on magneto-radiation–convection near a rotating vertical plate, European Journal of Mechanics-B/Fluids 75(2019) 209-218.
DOI: 10.1016/j.euromechflu.2018.09.010
Google Scholar
[9]
U. S. Rajput, S. Kumar, Radiation effect on MHD flow through porous media past an impulsively started vertical plate with variable heat and mass transfer, Int. J. Math. Arch, 4(10) (2013) 106 - 114.
DOI: 10.1007/s11242-012-0078-x
Google Scholar
[10]
U. S. Rajput, G. Kumar, Radiation effect on MHD flow past an inclined plate with variable temperature and mass diffusion, Int. J. Appl. Sci and Eng, 14(3) (2017) 171 - 183.
Google Scholar
[11]
R. Nandkeolyar, G. S. Seth, O. D. Makinde, P. Sibanda, M. S. Ansari, Unsteady hydro-magnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation, ASME, Journal of Appl. Mech, 80, 061003 (2013) (9pages).
DOI: 10.1115/1.4023959
Google Scholar
[12]
S. Das, R. N. Jana, O. D. Makinde, Magneto-convective boundary layer slip flow of nanofluid past a convectively heated vertical plate, Journal of Nanofluids, 4(4) (2015) 494 - 504.
DOI: 10.1166/jon.2015.1170
Google Scholar
[13]
A. Muhammad, O. D. Makinde, Thermo-dynamic analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum, 374 (2017) 29 - 46.
DOI: 10.4028/www.scientific.net/ddf.374.29
Google Scholar
[14]
P. O. Olanrewaju, O. D. Makinde, Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with suction /injection, Arabian Journal of Science and Engineering, 36 (2011) 1607-1619.
DOI: 10.1007/s13369-011-0143-8
Google Scholar
[15]
O. D. Makinde, P. Sibanda, Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation, International Journal of Numerical Methods for Heat & Fluid Flow, 21(6) (2011) 779-792.
DOI: 10.1108/09615531111148509
Google Scholar
[16]
R. Muthucumaraswamy, P. Ganesan, First order chemical reaction on flow past an impulsively started vertical plate with uniform heat and mass flux, Acta Mechanica, 147 (2001) 45 - 57.
DOI: 10.1007/bf01182351
Google Scholar
[17]
O. D. Makinde, Chemically reacting hydro-magnetic unsteady flow of radiating fluid past a vertical plate with constant heat flux, Zeitschrift f'ur Naturforschung, 67a (2012) 239 - 247.
DOI: 10.5560/zna.2012-0014
Google Scholar
[18]
R. Jayakar, B. Kumar, O. D. Makinde, Thermo-diffusion effects on MHD chemically reacting fluid flow past an inclined porous plate in a slip flow regime, Defect and Diffusion forum, 387 (2018) 587 - 599.
DOI: 10.4028/www.scientific.net/ddf.387.587
Google Scholar
[19]
T. C. Cowling, Magnetohydrodynamics, Wiley Inter Science, New York, (1957).
Google Scholar
[20]
J. Fife, Hybrid-PIC Modeling and electrostatic probe survey of Hall thrusters-PhD Thesis, Department of Aeronautics and Astronautics, MIT, USA, (1998).
Google Scholar
[21]
P. A. Davidson, Magneto-hydrodynamics in material processing – Annual review Fluid Mech, 31 (1999) 273 - 300.
Google Scholar
[22]
S. Gandluru, D.R.V. Prasad Rao, O.D. Makinde, Hydromagnetic-oscillatory flow of a nanofluid with Hall effect and thermal radiation past vertical plate in a rotating porous medium, Multidiscipline Modeling in Materials and Structures, 14(2) (2018) 360–386.
DOI: 10.1108/mmms-06-2017-0051
Google Scholar
[23]
A. N. Maguna, N. M. Mutua, Hall current effects on free convection flow and mass transfer past a semi infinite vertical flat plate, Int. J. Mathematics and Statistics studies, 1(4) (2013)1-22.
Google Scholar
[24]
M. Thamizhsudar, J. Pandurangan, R. Muthucumaraswamy, Hall effects and rotation effects on MHD flow past an exponentially accelerated vertical plate with combined heat and mass transfer effects, Int. J. Appl. Mech and Eng, 20( 3) (2015) 605 - 616.
DOI: 10.1515/ijame-2015-0039
Google Scholar
[25]
U. S. Rajput, N. Kanaujia, MHD flow past a vertical plate with variable temperature and mass diffusion in the presence of Hall current, Int. J. Appl. Sci. Eng, 14 (2) (2016) 115 – 123.
DOI: 10.4314/ijest.v8i4.4
Google Scholar
[26]
B. Prabhakar Reddy, Hall effect on MHD transient flow past an impulsively started infinite horizontal porous plate in a rotating system, Int. J. Appl. Mech. Eng, 23(2) (2018) 471 – 483.
DOI: 10.2478/ijame-2018-0027
Google Scholar
[27]
R.P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect and Diffusion Forum, 377 (2017) 242-259.
DOI: 10.4028/www.scientific.net/ddf.377.242
Google Scholar
[28]
O.C. Zienkiewiez, The finite element method in engineering sciences - 2nd edition., McGraw-Hill, New York, (1971).
Google Scholar
[29]
J. N. Reddy, An introduction to the finite element method, McGraw-Hill, New York, (1985).
Google Scholar
[30]
K. J. Bathe, Finite element procedures, Prentice-Hall, New Jersey, (1996).
Google Scholar