A Study of Transient Heat Transfer through a Moving Fin with Temperature Dependent Thermal Properties

Article Preview

Abstract:

In this article, heat transfer through a moving fin with convective and radiative heat dissipation is studied. The analytical solutions are generated using the two-dimensional Differential Transform Method (2D DTM) which is an analytical solution technique that can be applied to various types of differential equations. The accuracy of the analytical solution is validated by benchmarking it against the numerical solution obtained by applying the inbuilt numerical solver in MATLAB ($pdepe$). A good agreement is observed between the analytical and numerical solutions. The effects of thermo-physical parameters, such as the Peclet number, surface emissivity coefficient, power index of heat transfer coefficient, convective-conductive parameter, radiative-conductive parameter and non-dimensional ambient temperature on non-dimensional temperature is studied and explained. Since numerous parameters are studied, the results could be useful in industrial and engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-13

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.Q Kern, A.D. Kraus, Extended Surface Heat Transfer, McGrawHill, New York, (1972).

Google Scholar

[2] A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, John Wiley and Sons, New York, (2001).

Google Scholar

[3] P. Kanti Roy, A. Mallick, H. Mondal, P. Sibanda, A Modified Decomposition Solution of Triangular Moving Fin with Multiple Variable Thermal Properties, Arabian J Science and Engineering, 43(30): 14851497, (2017).

DOI: 10.1007/s13369-017-2983-3

Google Scholar

[4] A.S. Dongonchi, D.D. Ganji, Convectionradiation heat transfer study of moving fin with temperaturedependent thermal conductivity, heat transfer coefficient and heat generation, Applied Thermal Eng. 103: 705712, (2016).

DOI: 10.1016/j.applthermaleng.2016.04.121

Google Scholar

[5] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int J Heat and Mass Transfer, 116: 346351, (2018).

DOI: 10.1016/j.ijheatmasstransfer.2017.08.091

Google Scholar

[6] M. Turkyilmazoglu, Efficiency of the longitudinal fins of trapezoidal profile in motion, Heat Transfer, 139(9): 4 pages, (2017).

DOI: 10.1115/1.4036328

Google Scholar

[7] R.K. Singla, R. Das, Application of decomposition solution and inverse prediction of parameters in a moving fin, Energy Conversion and Management, 84: 268281, (2014).

DOI: 10.1016/j.enconman.2014.04.045

Google Scholar

[8] Y.S. Sun, J. Ma, B.W. Li, Spectral collocation method for convectiveradiative transfer of a moving rod with variable thermal conductivity, Int J Thermal Sciences 90: 187196, (2015).

DOI: 10.1016/j.ijthermalsci.2014.12.019

Google Scholar

[9] Y.S. Sun, J.L. Xu, Thermal performance of continuously moving radiativeconvective fin of complex crosssection with multiple nonlinearities, Int Comm Heat and Mass Transfer, 63: 2334, (2015).

DOI: 10.1016/j.icheatmasstransfer.2015.01.011

Google Scholar

[10] J. Ma, Y. Sun, B. Li, Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method, Int J Thermal Sciences, 118: 475487, (2017).

DOI: 10.1016/j.ijthermalsci.2017.05.008

Google Scholar

[11] S.A. AlSanea, Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection, Heat Mass Transfer, 47(67): 14451465, (2004).

DOI: 10.1016/j.ijheatmasstransfer.2003.09.016

Google Scholar

[12] P. Razelos, X. Kakatsios, Optimum dimensions of convectingradiating fins: Part I longitudinal fins, Applied Thermal Engineering 20: 11611192, (2000).

DOI: 10.1016/s1359-4311(99)00089-7

Google Scholar

[13] A. Aziz, F. Khani, Convectionradiation from a continuously moving fin of a variable thermal conductivity, Franklin Institute, 34: 640651, (2011).

DOI: 10.1016/j.jfranklin.2011.01.008

Google Scholar

[14] AM. Torabi, Q. Zhang, Analytical solution for evaluating the thermal performance and efficiency of convectiveradiative straight fins with various profiles and considering all nonlinearities, Energy Conversion and Management 66: 199210, (2013).

DOI: 10.1016/j.enconman.2012.10.015

Google Scholar

[15] Y. Sun, J. Ma, B. Li, Z. Guo, Predication of nonlinear heat transfer in a convectiveradiative fin with temperaturedependent properties by the collocation spectral method, Numerical Heat Transfer Part B, 69(1): 6883, (2016).

DOI: 10.1080/10407782.2015.1081043

Google Scholar

[16] B. Kundu, S. Wongwises, A decomposition analysis on convectiveradiating rectangular plate fins for variable thermal conductivity and heat transfer coefficient, Franklin Institute, 349: 966984, (2012).

DOI: 10.1016/j.jfranklin.2011.12.002

Google Scholar

[17] A. Aziz, O.D. Makinde, Heat transfer and entropy generation in a twodimensional orthotropic convection pin fin, International J. of Exergy, 7(5), 579592, (2010).

DOI: 10.1504/ijex.2010.034930

Google Scholar

[18] M.G. Mhlongo, R.J. Moitsheki, O.D. Makinde, Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions, International J. of Heat and Mass Transfer, 57, 117125, (2013).

DOI: 10.1016/j.ijheatmasstransfer.2012.10.012

Google Scholar

[19] J.K Zhou, Differential transformation and its application for electrical circuits, Huazhong University Press, Wuhan China, (1986).

Google Scholar

[20] M. Torabi, H. Yaghoobi, A. Aziz, Analytical solution for convectiveradiative continuously moving fin with temperaturedependent thermal conductivity, Int J Thermophysics, 33: 924941, (2012).

DOI: 10.1007/s10765-012-1179-z

Google Scholar

[21] A. Moradi, R. Rafiee, Analytical solution to convectionradiation of a continuously moving fin with temperaturedependent thermal conductivity, Thermal Science, 17(4): 10491060, (2013).

DOI: 10.2298/tsci110425005m

Google Scholar

[22] P.L. Ndlovu, R.J. Moitsheki, Application of the twodimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Comm Nonlinear Science and Numerical Simulation, 18: 26892698, (2013).

DOI: 10.1016/j.cnsns.2013.02.019

Google Scholar

[23] S. Mosayebidorcheh, M. RahimiGorji, D.D Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian, Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperaturedependent properties using DTMFDM, Central South University, 24(3): 675682, (2017).

DOI: 10.1007/s11771-017-3468-y

Google Scholar

[24] A. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties, Defect and Diffusion Forum, 387, 1022, (2018).

DOI: 10.4028/www.scientific.net/ddf.387.10

Google Scholar

[25] M. Hatami, K. Hosseinzadeh, D.D. Ganji, M.T. Behnamfar, Numerical study of MHD twophase Couette flow analysis for fluidparticle suspension between moving parallel plates, Taiwan Institute of Chemical Engineers, 45(5): 22382245, (2014).

DOI: 10.1016/j.jtice.2014.05.018

Google Scholar

[26] B. Kundu, K. Lee, A proper analytical analysis of annular step porous fins for determining maximum heat transfer, Energy Conversion and Management, 110: 469480, (2016).

DOI: 10.1016/j.enconman.2015.09.037

Google Scholar

[27] P.L. Ndlovu, R.J. Moitsheki, Predicting the Temperature Distribution in Longitudinal Fins of Various Profiles with Power Law Thermal Properties Using the Variational Iteration Method, Defect and Diffusion Forum, 387: 403416, (2018).

DOI: 10.4028/www.scientific.net/ddf.387.403

Google Scholar

[28] H.C. Ünal, An analytical study of boiling heat transfer from a fin, Int J Heat and Mass Transfer 31: 14831496, (1988).

Google Scholar

[29] F. Kangalgil, F. Ayaz, Solitary wave solutions for the KdV and mKdV equations by differential transform method, Chaos, Solitons and Fractals, 41(1): 464472, (2009).

DOI: 10.1016/j.chaos.2008.02.009

Google Scholar

[30] F. Ayaz, On the twodimensional differential transform method, Computational and Applied Mathematics, 143: 361374, (2003).

Google Scholar