[1]
M. Jalil, S. Asghar, Flow of power-law fluid over a stretching surface: A Lie group analysis, International Journal of Non-Linear Mechanics, 48 (2013) 65–71.
DOI: 10.1016/j.ijnonlinmec.2012.07.004
Google Scholar
[2]
R.E. Powell, H. Eyring, Mechanism for relaxation theory of viscosity, Nature, 154 (1944) 427–428.
DOI: 10.1038/154427a0
Google Scholar
[3]
T.Y. Na, Boundary layer flow of Reiner-Philippoff fluids, International Journal of Non-Linear Mechanics, 29 (1994) 871–877.
DOI: 10.1016/0020-7462(94)90059-0
Google Scholar
[4]
Y.D. Wadhwa, Generalized Couette flow of an Ellis fluid, AIChE Journal, 12 (1966) 890–893.
DOI: 10.1002/aic.690120511
Google Scholar
[5]
A. Acrivos, M.J. Shah, E.E. Petersen, Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces, AIChE Journal, 6 (1960) 312–317.
DOI: 10.1002/aic.690060227
Google Scholar
[6]
S.Y. Lee, W.F. Ames, Similarity solutions for non-Newtonian fluids, AIChE Journal, 12 (1966) 700–708.
DOI: 10.1002/aic.690120415
Google Scholar
[7]
A.G. Hansen, T.Y. Na, Similarity solutions of laminar, incompressible boundary layer equations of non-Newtonian fluids, Journal of Basic Engineering, 90 (1968) 71–74.
DOI: 10.1115/1.3605067
Google Scholar
[8]
A. Ahmad, S. Asghar, Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field, Applied Mathematics Letters, 24 (2011) 1905–(1909).
DOI: 10.1016/j.aml.2011.05.016
Google Scholar
[9]
N.A. Halim, R.U. Haq, N.F.M. Noor, Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface, Meccanica, 52 (2017) 1527–1539.
DOI: 10.1007/s11012-016-0517-9
Google Scholar
[10]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230 (2014) 345–354.
DOI: 10.1177/0954408914550357
Google Scholar
[11]
G. Singh, O.D. Makinde, Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, Thermal Science, 19 (2015) 119–128.
DOI: 10.2298/tsci120718110s
Google Scholar
[12]
W.A. Khan, J.R. Culham, O.D. Makinde, Combined heat and mass transfer of third-grade nanofluids over a convectively-heated stretching permeable surface, The Canadian Journal of Chemical Engineering, 93 (2015) 1880–1888.
DOI: 10.1002/cjce.22283
Google Scholar
[13]
O.D. Makinde, M.T. Omojola, B. Mahanthesh, F.I. Alao, K.S. Adegbie, I.L. Animasaun, A. Wakif, R. Sivaraj, M.S. Tshehla, Significance of buoyancy, velocity index and thickness of an upper horizontal surface of a paraboloid of revolution: The case of non-Newtonian Carreau fluid, Defect and Diffusion Forum, 387 (2018) 550–561.
DOI: 10.4028/www.scientific.net/ddf.387.550
Google Scholar
[14]
O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution. International Journal of Nonlinear Sciences and Numerical Simulation, 19(2/3) (2018) 93–106.
DOI: 10.1515/ijnsns-2016-0087
Google Scholar
[15]
K. Gangadhar, K.R. Venkata, O.D. Makinde, B.R. Kumar, MHD flow of a Carreau fluid past a stretching cylinder with Cattaneo-Christov heat flux using spectral relaxation method, Defect and Diffusion Forum, 387 (2018) 91–105.
DOI: 10.4028/www.scientific.net/ddf.387.91
Google Scholar
[16]
S.G. Kumar, S.V.K. Varma, P.D. Prasad, C.S.K. Raju, O.D. Makinde, R. Sharma, MHD reacting and radiating 3-D flow of Maxwell fluid past a stretching sheet with heat source/sink and Soret effects in a porous medium, Defect and Diffusion Forum, 387 (2018) 145–156.
DOI: 10.4028/www.scientific.net/ddf.387.145
Google Scholar
[17]
K. Sreelakshmi, G. Sarojamma, O.D. Makinde, Dual stratification on the Darcy-Forchheimer flow of a Maxwell nanofluid over a stretching surface, Defect and Diffusion Forum, 387 (2018) 207–217.
DOI: 10.4028/www.scientific.net/ddf.387.207
Google Scholar
[18]
A. Wakif, Z. Boulahia, R. Sehaqui, Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non- uniform internal heating, Journal of Nanofluids, 6 (2017) 136–148.
DOI: 10.1166/jon.2017.1293
Google Scholar
[19]
A. Wakif, Z. Boulahia, R. Sehaqui, Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field, Results in Physics, 7 (2017) 2134–2152.
DOI: 10.1016/j.rinp.2017.06.003
Google Scholar
[20]
A. Wakif, Z. Boulahia, F. Ali, M.R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids, International Journal of Applied and Computational Mathematics, 81(4) (2018) 1–27.
DOI: 10.1007/s40819-018-0513-y
Google Scholar
[21]
M.I. Afridi, A. Wakif, M. Qasim, A. Hussanan, Irreversibility analysis of dissipative fluid flow over a curved surface stimulated by variable thermal conductivity and uniform magnetic field: Utilization of generalized differential quadrature method, Entropy, 20 (2018) 1–15.
DOI: 10.3390/e20120943
Google Scholar
[22]
A. Wakif, Z. Boulahia, S.R. Mishra, M.M. Rashidi, R. Sehaqui, Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model, European Physical Journal Plus, 133 (2018) 1–16.
DOI: 10.1140/epjp/i2018-12037-7
Google Scholar
[23]
S. Shaw, S.S. Sen, M.K. Nayak, O.D. Makinde, Boundary layer non-linear convection flow of Sisko-nanofluid with melting heat transfer over an inclined permeable electromagnetic sheet, Journal of Nanofluids, 8 (5) (2019) 917-928.
DOI: 10.1166/jon.2019.1649
Google Scholar
[24]
M.K. Nayak, A.K. Hakeem, O.D. Makinde, Time varying chemically reactive magneto-hydrodynamic non-linear Falkner-Skan flow over a permeable stretching/shrinking wedge: Buongiorno model, Journal of Nanofluids, 8 (3) (2019) 467-476.
DOI: 10.1166/jon.2019.1616
Google Scholar
[25]
M.K. Nayak, S. Shaw, O.D. Makinde, A.J. Chamkha, Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. Journal of Nanofluids, 8 (1) (2019) 51-62.
DOI: 10.1166/jon.2019.1576
Google Scholar
[26]
A.K. Hakeem, M.K. Nayak, O.D. Makinde, Effect of exponentially variable viscosity and permeability on Blasius flow of Carreau nanofluid over an electromagnetic plate through a porous medium, Journal of Applied and Computational Mechanics, 5 (2) (2019) 390-401.
Google Scholar
[27]
K.V. Prasad, H. Vaidya, O.D. Makinde, B.S. Setty, MHD mixed convective flow of Casson nanofluid over a slender rotating disk with source/sink and partial slip effects, Defect and Diffusion Forum, 392 (2019) 92-122.
DOI: 10.4028/www.scientific.net/ddf.392.92
Google Scholar
[28]
N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevskii, V. Volpert, Methods of blood flow modelling, Mathematical Modelling of Natural Phenomena, 11 (2016) 1–25.
DOI: 10.1051/mmnp/201611101
Google Scholar
[29]
O.K. Koriko, I.L. Animasaun, M.G. Reddy, N. Sandeep, Scrutinization of thermal stratification, nonlinear thermal radiation and quartic autocatalytic chemical reaction effects on the flow of three-dimensional Eyring-Powell alumina-water nanofluid, Multidiscipline Modeling in Materials and Structures, 14 (2017) 261–283.
DOI: 10.1108/mmms-08-2017-0077
Google Scholar
[30]
O.A. Abegunrin, I.L. Animasaun, N. Sandeep, Insight into the boundary layer flow of non-Newtonian Eyring-Powell fluid due to catalytic surface reaction on an upper horizontal surface of a paraboloid of revolution, Alexandria Engineering Journal, 57 (2018) 2051–(2060).
DOI: 10.1016/j.aej.2017.05.018
Google Scholar
[31]
I.L. Animasaun, B. Mahanthesh, O.K. Koriko, On the motion of non-Newtonian Eyring–Powell fluid conveying tiny gold particles due to generalized surface slip velocity and buoyancy, International Journal of Applied and Computational Mathematics, 137(4) (2018) 1–22.
DOI: 10.1007/s40819-018-0571-1
Google Scholar
[32]
W.L. Barth, Simulation of non-Newtonian fluids on workstation clusters, (Doctoral dissertation). The University of Texas, Austin, (2004).
Google Scholar
[33]
E.M. Sparrow, H.S. Yu, Local non-similarity thermal boundary-layer solutions, Journal of Heat Transfer, 93 (1971) 328–334.
DOI: 10.1115/1.3449827
Google Scholar
[34]
M. Massoudi, Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge, International Journal of Non-Linear Mechanics. 36 (2001) 961–976.
DOI: 10.1016/s0020-7462(00)00061-5
Google Scholar
[35]
S. Nadeem, R. Ul Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Scientia Iranica, 19 (2012) 1550–1553.
DOI: 10.1016/j.scient.2012.10.021
Google Scholar