[1]
A. Aziz and S. M. Enamul-Huq, Perturbation solution for convecting fin with variable thermal conductivity, Journal of Heat Transfer, 97 (1975) 300-301.
DOI: 10.1115/1.3450361
Google Scholar
[2]
A. Aziz, Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity, International Journal of Heat and Mass Transfer, 20 (1977) 1253-1255.
DOI: 10.1016/0017-9310(77)90135-1
Google Scholar
[3]
A. Campo, R. J. Spaulding, Coupling of the methods of successive approximations and undetermined coefficients for the prediction of the thermal behaviour of uniform circumferential fins, Heat and Mass Transfer, 34 (1999) 461-468.
DOI: 10.1007/s002310050283
Google Scholar
[4]
C. Ching-Huang and C. Cha'o-Kuang, A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer, 45 (2002) 2067-2075.
DOI: 10.1016/s0017-9310(01)00286-1
Google Scholar
[5]
C. Arslanturk, A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, International Communications in Heat and Mass Transfer, 32 (2005) 831-841.
DOI: 10.1016/j.icheatmasstransfer.2004.10.006
Google Scholar
[6]
A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Physics Letters A, 364 (2007) 33-37.
DOI: 10.1016/j.physleta.2006.11.062
Google Scholar
[7]
M. S. H. Chowdhury, I. Hashim, Analytical solutions to heat transfer equations by homotopy-perturbation method revisited, Physics Letters A, 372 (2008) 1240-1243.
DOI: 10.1016/j.physleta.2007.09.015
Google Scholar
[8]
M. Inc, Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Mathematics and Computers in Simulation, 79 (2008)189-200.
DOI: 10.1016/j.matcom.2007.11.009
Google Scholar
[9]
S. B. Coskun, M.T. Atay, Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis, Mathematical Problems in Engineering, 2007 (2007).
DOI: 10.1155/2007/42072
Google Scholar
[10]
S. B. Coşkun, M. T. Atay, Fin efficiency analysis of convective straight fins with temperature-dependent thermal conductivity using variational iteration method, Applied Thermal Engineering, 28 (2008) 2345-2352.
DOI: 10.1016/j.applthermaleng.2008.01.012
Google Scholar
[11]
G. Oguntala, G. Sobamowo, Y. Ahmed, R. Abd-Alhameed, Application of approximate analytical technique using the homotopy perturbation method to study the inclination effect on the thermal behavior of porous fin heat sink, Mathematical and Computational Applications, 23 (2018) 62.
DOI: 10.3390/mca23040062
Google Scholar
[12]
G. A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Thermal Science and Engineering Progress, 6 (2018)177-185, (2018).
DOI: 10.1016/j.tsep.2017.10.019
Google Scholar
[13]
N. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties, Defect and Diffusion Forum, 387 (2018) 10–22.
DOI: 10.4028/www.scientific.net/ddf.387.10
Google Scholar
[14]
M. D. Mhlongo, R. J. Moitsheki, O. D. Makinde, Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions. International Journal of Heat and Mass Transfer, 57 (2013) 117–125.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.012
Google Scholar
[15]
A. Aziz, O. D. Makinde Entropy generation minimization design of a two-dimensional orthotropic convection pin fin, International Journal of Exergy, 7 (5) (2010) 579-592.
DOI: 10.1504/ijex.2010.034930
Google Scholar
[16]
G. Oguntala, R. Abd-Alhameed, Thermal analysis of convective-radiative fin with temperature-dependent thermal conductivity using chebychev spectral collocation method, Journal of Applied and Computational Mechanics, 4 (2018) 87-94.
DOI: 10.1016/j.kijoms.2017.09.003
Google Scholar
[17]
G. Oguntala, R. Abd-Alhameed, G. Sobamowo, On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity," Karbala International Journal of Modern Science, 4 (2018) 1-11.
DOI: 10.1016/j.kijoms.2017.09.003
Google Scholar
[18]
G. A. Oguntala, R. A. Abd-Alhameed, Haar wavelet collocation method for thermal analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation, Journal of Applied and Computational Mechanics, 3 (2017) 185-191.
Google Scholar
[19]
A.Moradi, R.Rafiee, Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity, Thermal Science, 17(4) (2013) 1049-1060.
DOI: 10.2298/tsci110425005m
Google Scholar
[20]
P.L. Ndlovu, R.J. Moitsheki, Application of thet wo-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Comm Nonlinear Science and Numerical Simulation, 18 (2013) 2689-2698.
DOI: 10.1016/j.cnsns.2013.02.019
Google Scholar
[21]
M. G. Sobamowo, Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation, Alexandria Engineering Journal, 56 (2017) 1-11.
DOI: 10.1016/j.aej.2016.04.022
Google Scholar
[22]
M. G. Sobamowo, Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin's method of weighted residual, Applied Thermal Engineering, 99 (2016)1316-1330.
DOI: 10.1016/j.applthermaleng.2015.11.076
Google Scholar
[23]
G. Oguntala, R. Abd-Alhameed, G. Sobamowo, H.-S. Abdullahi, Improved thermal management of computer microprocessors using cylindrical-coordinate micro-fin heat sink with artificial surface roughness, Engineering Science and Technology, an International Journal, 21 (2018) 736-744.
DOI: 10.1016/j.jestch.2018.06.008
Google Scholar
[24]
G.A. Oguntala, G.M. Sobamowo, N.N. Eya, R.A. Abd-Alhameed, Investigation of simultaneous effects of surface roughness, porosity, and magnetic field of rough porous microfin under a convective–radiative heat transfer for improved microprocessor cooling of consumer electronics, IEEE Transactions on Components, Packaging and Manufacturing Technology, 9 (2019) 235-246.
DOI: 10.1109/tcpmt.2018.2878737
Google Scholar
[25]
R. Kandasamy, X.-Q. Wang, A. S. Mujumdar, Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering, 28 (2008) 1047-1057.
DOI: 10.1016/j.applthermaleng.2007.06.010
Google Scholar
[26]
G. Oguntala, G. Sobamowo, Y. Ahmed, R. Abd-Alhameed, Thermal prediction of convective-radiative porous fin heat sink of functionally graded material using Adomian decomposition method, Computation, 7 (2019) 19.
DOI: 10.3390/computation7010019
Google Scholar
[27]
M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa, Nonlinear transient thermal modeling and analysis of a convective-radiative fin with functionally graded material in a magnetic environment, Modelling and Simulation in Engineering, 2019 (2019) 16pages.
DOI: 10.1155/2019/7878564
Google Scholar
[23]
S. Mosayebidorcheh, M. Rahimi-Gorji, D.D Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian,Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM, Central South University, 24(3) (2017) 675-682.
DOI: 10.1007/s11771-017-3468-y
Google Scholar
[29]
R. Hassanzadeh, M. Bilgili, Improvement of thermal efficiency in computer heat sink using functionally graded materials, Communications on Advanced Computational Science with Applications, 2014 (2014) 13 Pages.
DOI: 10.5899/2014/cacsa-00018
Google Scholar
[30]
M. V. Karwe, Y. Jaluria, Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing, Journal of Heat Transfer, 113 (1991) 612-619.
DOI: 10.1115/1.2910609
Google Scholar
[31]
S. Roy Choudhury, Y. Jaluria, Forced convective heat transfer from a continuously moving heated cylindrical rod in materials processing, Journal of Heat Transfer, 116, (1994) 724-734.
DOI: 10.1115/1.2910928
Google Scholar
[32]
A. Aziz, R. J. Lopez, Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, International Journal of Thermal Sciences, 50 (2011) 1523-1531.
DOI: 10.1016/j.ijthermalsci.2011.03.014
Google Scholar
[33]
M. Torabi, H. Yaghoobi, A. Aziz, Analytical solution for convective–radiative continuously moving fin with temperature-dependent thermal conductivity, International Journal of Thermophysics, 33 (2012) 924-941.
DOI: 10.1007/s10765-012-1179-z
Google Scholar
[34]
R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Conversion and Management, 84 (2014) 268-281.
DOI: 10.1016/j.enconman.2014.04.045
Google Scholar
[35]
D. Bhanja, B. Kundu, A. Aziz, Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment, Energy Conversion and Management, 88 (2014) 842-853.
DOI: 10.1016/j.enconman.2014.09.016
Google Scholar
[36]
Y. A. Cengel, A. J. Ghajar, Heat and Mass Transfer. Fundaments & Applications, 5th ed. USA: McGraw-Hill Education, (2013).
Google Scholar
[37]
F. P. Incropera, D. P. Dewitt, Introduction to Heat Transfer. USA: John Wiley & Sons, Inc, (2011).
Google Scholar
[38]
G. Sidebotham, Heat Transfer Modeling, in Energy, 1st Ed. ed. Heidelberg, Netherlands Springer, (2006).
Google Scholar