Determination of Proper Fin Length of a Convective-Radiative Moving Fin of Functionally Graded Material Subjected to Lorentz Force

Article Preview

Abstract:

Excess fin length results in material waste and additional weight leading to increased cost with no benefit in return. Moreover, extra fin length affects the overall performance of the fin as fluid motion is suppressed, resulting in reduced convective heat transfer coefficient. To achieve a miniaturised system with effective cooling, the determination of appropriate length of extended surfaces becomes a key performance and fabrication process factor. Therefore, the present work aims at determining the proper or effective length of a convective-radiative moving fin of functionally graded material under the influence of a magnetic field. The developed governing equation of the analysis is solved analytically with the aid of Kummer’s function. The analytical solutions are used to investigate the effects of non-homogeneity, convective, radiative and magnetic parameter on the thermal performance and the proper fin length. The present study is hoped to assist in making cost-effective decisions on designing cooling approaches for different consumer electronics and high-power systems under various operating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-24

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Aziz and S. M. Enamul-Huq, Perturbation solution for convecting fin with variable thermal conductivity, Journal of Heat Transfer, 97 (1975) 300-301.

DOI: 10.1115/1.3450361

Google Scholar

[2] A. Aziz, Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity, International Journal of Heat and Mass Transfer, 20 (1977) 1253-1255.

DOI: 10.1016/0017-9310(77)90135-1

Google Scholar

[3] A. Campo, R. J. Spaulding, Coupling of the methods of successive approximations and undetermined coefficients for the prediction of the thermal behaviour of uniform circumferential fins, Heat and Mass Transfer, 34 (1999) 461-468.

DOI: 10.1007/s002310050283

Google Scholar

[4] C. Ching-Huang and C. Cha'o-Kuang, A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer, 45 (2002) 2067-2075.

DOI: 10.1016/s0017-9310(01)00286-1

Google Scholar

[5] C. Arslanturk, A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, International Communications in Heat and Mass Transfer, 32 (2005) 831-841.

DOI: 10.1016/j.icheatmasstransfer.2004.10.006

Google Scholar

[6] A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Physics Letters A, 364 (2007) 33-37.

DOI: 10.1016/j.physleta.2006.11.062

Google Scholar

[7] M. S. H. Chowdhury, I. Hashim, Analytical solutions to heat transfer equations by homotopy-perturbation method revisited, Physics Letters A, 372 (2008) 1240-1243.

DOI: 10.1016/j.physleta.2007.09.015

Google Scholar

[8] M. Inc, Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Mathematics and Computers in Simulation, 79 (2008)189-200.

DOI: 10.1016/j.matcom.2007.11.009

Google Scholar

[9] S. B. Coskun, M.T. Atay, Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis, Mathematical Problems in Engineering, 2007 (2007).

DOI: 10.1155/2007/42072

Google Scholar

[10] S. B. Coşkun, M. T. Atay, Fin efficiency analysis of convective straight fins with temperature-dependent thermal conductivity using variational iteration method, Applied Thermal Engineering, 28 (2008) 2345-2352.

DOI: 10.1016/j.applthermaleng.2008.01.012

Google Scholar

[11] G. Oguntala, G. Sobamowo, Y. Ahmed, R. Abd-Alhameed, Application of approximate analytical technique using the homotopy perturbation method to study the inclination effect on the thermal behavior of porous fin heat sink, Mathematical and Computational Applications, 23 (2018) 62.

DOI: 10.3390/mca23040062

Google Scholar

[12] G. A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Thermal Science and Engineering Progress, 6 (2018)177-185, (2018).

DOI: 10.1016/j.tsep.2017.10.019

Google Scholar

[13] N. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties, Defect and Diffusion Forum, 387 (2018) 10–22.

DOI: 10.4028/www.scientific.net/ddf.387.10

Google Scholar

[14] M. D. Mhlongo, R. J. Moitsheki, O. D. Makinde, Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions. International Journal of Heat and Mass Transfer, 57 (2013) 117–125.

DOI: 10.1016/j.ijheatmasstransfer.2012.10.012

Google Scholar

[15] A. Aziz, O. D. Makinde Entropy generation minimization design of a two-dimensional orthotropic convection pin fin, International Journal of Exergy, 7 (5) (2010) 579-592.

DOI: 10.1504/ijex.2010.034930

Google Scholar

[16] G. Oguntala, R. Abd-Alhameed, Thermal analysis of convective-radiative fin with temperature-dependent thermal conductivity using chebychev spectral collocation method, Journal of Applied and Computational Mechanics, 4 (2018) 87-94.

DOI: 10.1016/j.kijoms.2017.09.003

Google Scholar

[17] G. Oguntala, R. Abd-Alhameed, G. Sobamowo, On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity," Karbala International Journal of Modern Science, 4 (2018) 1-11.

DOI: 10.1016/j.kijoms.2017.09.003

Google Scholar

[18] G. A. Oguntala, R. A. Abd-Alhameed, Haar wavelet collocation method for thermal analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation, Journal of Applied and Computational Mechanics, 3 (2017) 185-191.

Google Scholar

[19] A.Moradi, R.Rafiee, Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity, Thermal Science, 17(4) (2013) 1049-1060.

DOI: 10.2298/tsci110425005m

Google Scholar

[20] P.L. Ndlovu, R.J. Moitsheki, Application of thet wo-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Comm Nonlinear Science and Numerical Simulation, 18 (2013) 2689-2698.

DOI: 10.1016/j.cnsns.2013.02.019

Google Scholar

[21] M. G. Sobamowo, Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation, Alexandria Engineering Journal, 56 (2017) 1-11.

DOI: 10.1016/j.aej.2016.04.022

Google Scholar

[22] M. G. Sobamowo, Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin's method of weighted residual, Applied Thermal Engineering, 99 (2016)1316-1330.

DOI: 10.1016/j.applthermaleng.2015.11.076

Google Scholar

[23] G. Oguntala, R. Abd-Alhameed, G. Sobamowo, H.-S. Abdullahi, Improved thermal management of computer microprocessors using cylindrical-coordinate micro-fin heat sink with artificial surface roughness, Engineering Science and Technology, an International Journal, 21 (2018) 736-744.

DOI: 10.1016/j.jestch.2018.06.008

Google Scholar

[24] G.A. Oguntala, G.M. Sobamowo, N.N. Eya, R.A. Abd-Alhameed, Investigation of simultaneous effects of surface roughness, porosity, and magnetic field of rough porous microfin under a convective–radiative heat transfer for improved microprocessor cooling of consumer electronics, IEEE Transactions on Components, Packaging and Manufacturing Technology, 9 (2019) 235-246.

DOI: 10.1109/tcpmt.2018.2878737

Google Scholar

[25] R. Kandasamy, X.-Q. Wang, A. S. Mujumdar, Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering, 28 (2008) 1047-1057.

DOI: 10.1016/j.applthermaleng.2007.06.010

Google Scholar

[26] G. Oguntala, G. Sobamowo, Y. Ahmed, R. Abd-Alhameed, Thermal prediction of convective-radiative porous fin heat sink of functionally graded material using Adomian decomposition method, Computation, 7 (2019) 19.

DOI: 10.3390/computation7010019

Google Scholar

[27] M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa, Nonlinear transient thermal modeling and analysis of a convective-radiative fin with functionally graded material in a magnetic environment, Modelling and Simulation in Engineering, 2019 (2019) 16pages.

DOI: 10.1155/2019/7878564

Google Scholar

[23] S. Mosayebidorcheh, M. Rahimi-Gorji, D.D Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian,Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM, Central South University, 24(3) (2017) 675-682.

DOI: 10.1007/s11771-017-3468-y

Google Scholar

[29] R. Hassanzadeh, M. Bilgili, Improvement of thermal efficiency in computer heat sink using functionally graded materials, Communications on Advanced Computational Science with Applications, 2014 (2014) 13 Pages.

DOI: 10.5899/2014/cacsa-00018

Google Scholar

[30] M. V. Karwe, Y. Jaluria, Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing, Journal of Heat Transfer, 113 (1991) 612-619.

DOI: 10.1115/1.2910609

Google Scholar

[31] S. Roy Choudhury, Y. Jaluria, Forced convective heat transfer from a continuously moving heated cylindrical rod in materials processing, Journal of Heat Transfer, 116, (1994) 724-734.

DOI: 10.1115/1.2910928

Google Scholar

[32] A. Aziz, R. J. Lopez, Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, International Journal of Thermal Sciences, 50 (2011) 1523-1531.

DOI: 10.1016/j.ijthermalsci.2011.03.014

Google Scholar

[33] M. Torabi, H. Yaghoobi, A. Aziz, Analytical solution for convective–radiative continuously moving fin with temperature-dependent thermal conductivity, International Journal of Thermophysics, 33 (2012) 924-941.

DOI: 10.1007/s10765-012-1179-z

Google Scholar

[34] R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Conversion and Management, 84 (2014) 268-281.

DOI: 10.1016/j.enconman.2014.04.045

Google Scholar

[35] D. Bhanja, B. Kundu, A. Aziz, Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment, Energy Conversion and Management, 88 (2014) 842-853.

DOI: 10.1016/j.enconman.2014.09.016

Google Scholar

[36] Y. A. Cengel, A. J. Ghajar, Heat and Mass Transfer. Fundaments & Applications, 5th ed. USA: McGraw-Hill Education, (2013).

Google Scholar

[37] F. P. Incropera, D. P. Dewitt, Introduction to Heat Transfer. USA: John Wiley & Sons, Inc, (2011).

Google Scholar

[38] G. Sidebotham, Heat Transfer Modeling, in Energy, 1st Ed. ed. Heidelberg, Netherlands Springer, (2006).

Google Scholar