Effect of Heat Treatment on the Structure, Wear and Corrosion of AISI L6 Tool Steel

Article Preview

Abstract:

This work is a contribution in analyzing structure, tribological behavior and corrosion of AISI L6 hardened tool steel. Structural characterization and tribological behavior of steel were investigated using Optical Microscopy (OM), Scanning electron microscopy (SEM), wear testing by friction on a pin-on-disc Tribometer and corrosion by potentiodynamic polarization. Comparing to the as-received steel, hardening has generated a fine martensitic microstructure causing a 1.5 times hardness increase. Hardening has contributed to improvement of wear resistance as the coefficient of friction has decreased from 0.86 to 0.67μ. An increase in corrosion resistance was observed after hardening treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-456

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Toboła, W. Brostow, K. Czechowski, P. Rusek, Improvement of wear resistance of some cold working tool steels, Wear, 382 (2017), 29-39.

DOI: 10.1016/j.wear.2017.03.023

Google Scholar

[2] J. A. Szumera, The tool steel guide. Industrial, First ed., Industrial Press Inc, New York, (2003).

Google Scholar

[3] R. A. Mesquita, Tool Steels: Properties and Performance, Taylor & Francis Group, Boca Raton, (2017).

Google Scholar

[4] T. Nykiel, T. Hryniewicz, Transformations of carbides during tempering of D3 tool steel, J. Mater. Eng. Perform., 23 (2014) 2050-2054.

DOI: 10.1007/s11665-014-0979-7

Google Scholar

[5] Ö. N. Doğan, J. A. Hawk, J. H. Tylczak, Wear of cast chromium steels with TiC reinforcement, Wear, 250 (2001) 462-469.

DOI: 10.1016/s0043-1648(01)00635-4

Google Scholar

[6] N. Mole, I. Naglič, R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model, Mater. Today, 22 (2020).

DOI: 10.1016/j.mtcomm.2019.100744

Google Scholar

[7] H. Demir, S. Gündüz, M. A. Erden, Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel, Int. J. Adv. Manuf. Technol., 95 (2018) 2951-2958.

DOI: 10.1007/s00170-017-1426-3

Google Scholar

[8] M. Momeni, S. Kheirandish, H. Saghafian, J. Hedjazi, M. Momeni, Effects of heat treatment on mechanical properties of modified cast AISI D3 tool steel, Mater. Des., 54 (2014) 742-747.

DOI: 10.1016/j.matdes.2013.09.002

Google Scholar

[9] B. Skela, M. Sedlaček, F. Kafexhiu, B. Podgornik,Wear behaviour and correlations to the microstructural characteristics of heat treated hot work tool steel, Wear, 426 (2019) 1118-1128.

DOI: 10.1016/j.wear.2018.12.032

Google Scholar

[10] P. Timotius, C. Zhan, R. Maziar, N. Thomas, A. Dominique, The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel, J. Mater. Sci. Chem. Eng, 1 (2013), 20-29.

Google Scholar

[11] W. Prudente, J. F. C. Lins, R. P. Siqueira, S. N. Priscila, Microstructural evolution under tempering heat treatment in AISI H13 hot-work tool steel, Int. J. Eng. Res. Appl, 7 (2017) 67-71.

DOI: 10.9790/9622-0704046771

Google Scholar

[12] B. Skela, M. Sedlaček, B. Podgornik, Microstructure and Heat Treatment of Hot Work Tool Steel: Influence on Mechanical Properties and Wear Behaviour, Key Eng. Mater., 767 (2018), 196-203.

DOI: 10.4028/www.scientific.net/kem.767.196

Google Scholar

[13] F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, M. Pellizzari, Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing, Mater. Sci. Eng., A, 753 (2019) 109-121.

DOI: 10.1016/j.msea.2019.03.027

Google Scholar

[14] N. S. Kalsi, R. Sehgal, V. S. Sharma, Cryogenic treatment of tool materials: a review, Mater. Manuf. Processes, 25 (2010) 1077-1100.

DOI: 10.1080/10426911003720862

Google Scholar

[15] K. Amini, S. Nategh, A. Shafyei, A. Rezaeian, Effect of deep cryogenic treatment on the properties of 80CrMo12 5 tool steel, Int. J. Miner. Metall. Mater., 19 (2012) 30-37.

DOI: 10.1007/s12613-012-0511-8

Google Scholar

[16] A. Akhbarizadeh, M. A. Golozar, A. Shafeie, M. Kholghy, Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment, J. Iron. Steel Res. Int., 16 (2009) 29-32.

DOI: 10.1016/s1006-706x(10)60023-4

Google Scholar

[17] K. Amini, A. Akhbarizadeh, S. Javadpour, Cryogenic heat treatment - a review of the current state, Metall. Mater. Eng., 23 (2017) 1-10.

DOI: 10.30544/238

Google Scholar

[18] B. Podgornik, B. Žužek, F. Kafexhiu, V. Leskovšek, Effect of Si content on wear performance of hot work tool steel, Tribol. Lett., 63 (2016) 5-10.

DOI: 10.1007/s11249-016-0695-6

Google Scholar

[19] S. Kheirandish, A. Noorian, Effect of niobium on microstructure of cast AISI H13 hot work tool steel, J. Iron. Steel Res. Int., 15 (2008) 61-66.

DOI: 10.1016/s1006-706x(08)60145-4

Google Scholar

[20] A. Günen, İ. H. Karahan, M. S. Karakaş, B. Kurt, Y. Kanca, V. V. Çay, M. Yıldız, Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders, Met. Mater. Int., (2019) 1-12.

DOI: 10.1007/s12540-019-00421-0

Google Scholar

[21] N. Yasavol, H. Jafari, Microstructure, mechanical and corrosion properties of friction stir-processed AISI D2 tool steel. J. Mater. Eng. Perform., 24 (2015) 2151-2157.

DOI: 10.1007/s11665-015-1484-3

Google Scholar

[22] B. Skela, M. Sedlaček, F. Kafexhiu, B. Podgornik, Wear behaviour and correlations to the microstructural characteristics of heat treated hot work tool steel. Wear, 426 (2019) 1118-1128.

DOI: 10.1016/j.wear.2018.12.032

Google Scholar

[23] N. Mathiazhagan, T. S. Kumar, V. Balasubramanian, V.Gandhi, Performance study of medium carbon steel and austenitic stainless steel joints: friction welding process. Oxid. Commun. 38.4 A (2015) 2123-2134.

Google Scholar

[24] P. Schwingenschlögl, P. Niederhofer, M. Merklein, Investigation on basic friction and wear mechanisms within hot stamping considering the influence of tool steel and hardness, Wear, 426 (2019) 378-389.

DOI: 10.1016/j.wear.2018.12.018

Google Scholar

[25] A. Gharbi, A. Himour, S. Abderrahmane, K. Abderrahim, Inhibition Effect of 2, 2'-Bipyridyl on the Corrosion of Austenitic Stainless Steel in 0.5 M H2SO4, Orient. J. Chem., 34 (2018) 314-325.

DOI: 10.13005/ojc/340134

Google Scholar

[26] A. Gharbi, H. Maouche, O. Ghelloudj, Influence of Vanadium on the Corrosion Behavior of High Manganese Steel in 0.5 M H2SO4 Solution Acta Phys. Pol. A, 131(3) (2017) 346-348.

DOI: 10.12693/aphyspola.131.346

Google Scholar