Study of Chemical and Physical Characterization of the Natural Dolomite of Ain Mlila-Algeria

Article Preview

Abstract:

Dolomite is one of the commonest minerals that abound in the formation of a number of geological conditions. And it is found in abundance in eastern Algeria, especially Ain Mlila-Wilaya of Oum El Bouaghi-Algeria. The analyzed sample of raw dolomite has been by various physical-chemical techniques. The constituents of these carbonates are Ca, Mg, C, O, Al, Si, Fe, Ba, F, and Sr, analysis by XRD, and Raman, show that in addition to CaMg(CO3)2, we may have calcium carbonate. The Photoluminescence analysis characterizes the intrinsic and extrinsic defects of this carbonate. Differential thermal analysis reveals the different transformations of this mineral during heating. Indeed several stages including the elimination of water, the departure of CO2, the formation of MgO, and finally the formation of CaO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

481-491

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. William Day, Construction on dolomite in South Africa, Environmental Geology Water Sci. 8(1986) 83-89.

Google Scholar

[2] B. Chutichude, P. Chutichudet, S. Kaewsit, Effects of Dolomite Application on Plant Growth, Activities of Polyphenol Oxidase and Internal Quality of Grand Rapids Lettuce, International Journal of Agricultural Research. 5 (2010) 690-707.

DOI: 10.3923/ijar.2010.690.707

Google Scholar

[3] H. Bounib, H. Osmani, K. Loucif, J. Chevalier, G. Fantozzi, Caractérisation microstructurale et mécanique de réfractaires à base du Kaolin DD3 et la dolomite (5-20% poids), Réfractaires à base de Kaolin, Ann. Chim. Sci. Mat. 37 (2012)171-184.

DOI: 10.3166/acsm.38.131-145

Google Scholar

[4] T. Mannoni, G. Pesce, R. Vecchiattini, Dolomitic lime mortars with addition of burned kaolin: the genoese experience, ArcheoSciences, Revue d'archéométrieVaria, Archeosciences. 30(2006) 67-79.

DOI: 10.4000/archeosciences.165

Google Scholar

[5] A. N. NovikovL, V. Kravets, Some features of tar-bonded dolomite refractories, Refractories and Industrial Ceramics. 6 (1965) 205-207.

DOI: 10.1007/bf01290301

Google Scholar

[6] J.A. Roberts, P.A. Kenward, D. A. Fowle, R.H. Goldstein, L.A. Gonzalez and D.S. Moore, Surface chemistry allows for abiotic precipitation of dolomite at low temperature, Proceedingsof the National Academy of Sciences of the United States of America.36 (1980) 14540-5.

DOI: 10.1073/pnas.1305403110

Google Scholar

[7] A. Wells, Recent Dolomite in the Persian Gulf, Nature. 194 (1962)274-275.

DOI: 10.1038/194274a0

Google Scholar

[8] P. K. Weyl, Pressure solution and the force of crystallization- A phenomenological theory, Jour Geophys Res. 64(1959) 2001-2025.

DOI: 10.1029/jz064i011p02001

Google Scholar

[9] K. Abdellaoui, D. Bedghiou, A. Boumaza, Comparative study of thermal and compositional properties of Aïn M'lila dolomite, CaCO3, and MgCO3 using TG and FTIR analyses, Journal of Advanced Research in Science and Technology. 7(2020)42-53.

Google Scholar

[10] M. Fahad, Y. Iqbal, R. Ubic, Characteristics of dolomite from swabi, khyberpakhtunkhwa for its use as a raw material in fertilizer production, JPMS Conference Issue Materials (2011).

Google Scholar

[11] H. Nascimento dos Santos, R. Neumann, C. Alexandre Ávila, Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method. Minerals 7 (2017) 164.

DOI: 10.3390/min7090164

Google Scholar

[12] R.A. Howie, F.M. Broadhurst, X-ray data for dolomite and ankerite, American Mineralogist. 43(1958)1210-1216.

Google Scholar

[13] S. Gunasekaran, G. anbalagan, Thermal decomposition of natural dolomite, Bull. Mater. Sci. 30 (2007) 339–344.

DOI: 10.1007/s12034-007-0056-z

Google Scholar

[14] B. Xu, M. K. Poduska, Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals, Phys. Chem. 16 (2014) 17634.

DOI: 10.1039/c4cp01772b

Google Scholar

[15] B.D. Cullity, Elements of X-ray Diffraction, Addison- Wesley Publishing Co. Inc., New York, (1976).

Google Scholar

[16] T. N. A. S. Tengku Mustafa, S. R. R. Munusamy, D. N. Uy Lan, N. F. M. Yunos, Effect of quartz content on the physical and structural properties of carbonate rocks from Perlis, Malaysia, AIP Conference Proceedings 1756, 090008, (2016).

DOI: 10.1063/1.4958789

Google Scholar

[17] B. Šoptrajanov, Minerals from Macedonia XXVIII, A tribute to academician gligorjovanovski, Macedonian Journal of Chemistry and Chemical Engineering. 34(2015) 1-17.

DOI: 10.20450/mjcce.2015.683

Google Scholar

[18] V. Ramasamy, V. Ponnusamy, S. Sabari, S. R. Anishia, S. S. Gomathi, Effect of grinding on the crystal structure of recently excavated dolomite, Indian Journal of Pure and applied Physics. 47(2009) 586-591.

Google Scholar

[19] S. Gunasekaran, G. Anbalagan, S. Pandi, Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37(2006) 892-899.

DOI: 10.1002/jrs.1518

Google Scholar

[20] K. Shiv.Sharma, P. G. Lucey, M. Ghosh, H. W. Hubble, K. A. Horton, Stand-off Raman spectroscopic detection of minerals on planetary surfaces, SpectrochimicaActa Part A. 59 (2003) 2391-2407.

DOI: 10.1016/s1386-1425(03)00080-5

Google Scholar

[21] S. K. Sharmaa, A. K. Misraa, U. N. Singhb, Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration, Proc. of SPIE. 7153 (2008) 715307/1- 715307/11.

Google Scholar

[22] A.I. Surdo, V.A. Pustovarov, V.S. Kortov, A.S. Kishka, E.I. Zinin, Luminescence in anion-defective alpha-Al2O3 crystals over the nano-, micro- and millisecond intervals. Nuclear Instruments and Methods in Physics Research A. 543(2005)234-238.

DOI: 10.1016/j.nima.2005.01.189

Google Scholar

[23] A. Djelloul, A. Boumaza, Peculiarity of the Cathodoluminescence of Alpha- Alumina Prepared by Calcination of Gibbsite Powder or Generated by Oxidation of a Metallic FeCrAl Alloy, Cathodoluminescence, Dr. Naoki Yamamoto (Ed), 209-233, (2012).

DOI: 10.5772/32405

Google Scholar

[24] A. Al. Ghamdi, P. D.Townsend, Ion beam excited luminescence of sapphire. Nuclear Instruments and Methods in Physics Research B, 46 (1990)1-4.

DOI: 10.1016/0168-583x(90)90684-m

Google Scholar

[25] M. F. Serra, M .S. Conconi, G. Suarez, E. F. Agietti, N. M. Rendtorff, Firing transformations of an argentinean calcareous commercial clay, Cerâmica. 59 (2013) 254-261.

DOI: 10.1590/s0366-69132013000200010

Google Scholar