Use of Glass Powder and Sand Dune in Concrete: Characterization and Performance

Article Preview

Abstract:

Cement and alluvial sand are very essential materials in concrete preparation. The first material production contributes to the emissions of greenhouse gases, in particular carbon dioxide (CO2), and the extensive exploitation of second material constitutes a danger on the extinction of its deposits. The use of waste glass powder (WGP) to partially replace cement and dune sand as a replacement for a small amount of alluvial sand appears as a potential solution that solves several problems at once (disposal of glass waste, reduction of emissions gas and preservation of construction sand deposits). The objective of this study is to verify the effects of these partial replacements on concrete properties, their cost, and the CO2 emission reduction in the atmosphere. For this, three types of concrete are prepared: a control (0% of WGP); mixture 1 (10% WGP); and mixture 2 (20% WGP). In all three types, 5% of alluvial sand is replaced by dune sand. Obtained results show that these partial replacements do not affect the porosity (less than 20%), they give good indices as to the speed of sound propagation in the concrete (up to 3500 m/s), especially for the case of the second mixture after 56 days but this does not increase the concrete performance concerning compressive strength and performance of concrete with glass is less than that of control concrete. Economically, the reduction of 10% in cement saves 5 € per ton and environmentally, it reduces the emission of CO2 from cement industry by 0.5 to 0.7% of total anthropogenic CO2 emissions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

521-531

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Raupach, C.Le Quéré, G.P. Peters, J.G. Canadell, Anthropogenic CO2 emissions, Nature Climate Change. 3(7), (2013) 603-60.

DOI: 10.1038/nclimate1910

Google Scholar

[2] P.Le Hir, Climat: 2017, année de tous les records, sur lemonde.fr, 2 août 2018 (see August 3rd 2018).

Google Scholar

[3] IPCC, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, (2014).

DOI: 10.1017/cbo9781139151153

Google Scholar

[4] C. Fletcher, Climate Change. What The Science Tells Us, John Wiley & Sons, 2018, p.54.

Google Scholar

[5] R.J. Andres, T.A. Boden, F.-M. Bréon, P. Ciais, S. Davis, D. Erickson, J.S. Gregg, A. Jacobson, G. Marland, J. Miller, T. Oda, J.G.J. Olivier, M.R. Raupach, P. Rayner, and K. Treanton, A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences. 9 (2012) 1845–1871.

DOI: 10.5194/bg-9-1845-2012

Google Scholar

[6] C.A. Hendriks, E. Worrell, D. De Jager, K.Blok, P. Riemer, , Emission reduction of greenhouse gases from the cement industry. The Proceeding of the Greenhouse Gas Control Technologies Conference 2004. http://www.wbcsd.org/web/projects/cement/tf1/prghgt42.pdf.

DOI: 10.1016/b978-008043018-8/50150-8

Google Scholar

[7] F. Pearce, Green foundations, N. Sci. 175 (2002) 39-40.

Google Scholar

[8] T.R. Naik, G. Moriconi, Environmental-friendly durable concrete made with recycled materials for sustainable concrete construction. In: CANMET/ACI Int. Symp. Sustain. Dev. Cem. Concr., 2005, p.2.

Google Scholar

[9] H. Mikulcic, M. Vujanovic, N. Duic, Reducing the CO2 emissions in Croatian cement industry. Appl. Energy 101(2013) 41-48.

Google Scholar

[10] P. Teller, Use of LCI for the decision-making of a Belgian cement producer: a common methodology for accounting CO2 emissions related to the cement life cycle, Transport. 4, 2000, 6.

Google Scholar

[11] T. Bouziani, M. Bederina and M. Hadjoudja, Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC), International Journal of Concrete Structures and Materials. 6(1) (2012) 59-64.

DOI: 10.1007/s40069-012-0006-z

Google Scholar

[12] H. Du, K.H. Tan, Use of waste glass as sand in mortar. Part II. Alkali–silica reaction and mitigation methods, Cement and Concrete Composites 35 (2013) 118–126, http://dx.doi.org/10.1016/j.cemconcomp.2012.08.029.

DOI: 10.1016/j.cemconcomp.2012.08.029

Google Scholar

[13] T. Derek. 2.6 Trillion Pounds of Garbage: Where Does the World's Trash Go?, Business ,(see Jun 7, 2012). Web site: https://www.theatlantic.com/business/archive/2012/06/26-trillion-pounds-of-garbage-where-does-the-worlds-trash-go/258234/.

DOI: 10.4135/9781452230535.n41

Google Scholar

[14] CICA.. Les constituants des bétons et des mortiers. Fiches techniques, Tome 1. Collection Technique CIMBETON. Centre d'Information sur le Ciment et ses Applications, 2005, 71 p.

Google Scholar

[15] F.S. Feuzeu, Le sable et le béton. Canalblog, 2015. http://ruegeniecivil.canalblog.com/ archives/2015/06/29/32289854.html.

Google Scholar

[16] Y. Leghrieb, R. Mitiche, M.T. Bentebba, M. Djouhri, A. Kriker. The Manufacture of Raw Brick from the Saharan Sand-Based Mortar of Ouargla (Located in the Septentrional Sahara, Algeria) for use in Arid Regions. Arab J Sci. Eng. 37(2012) 2149–2161.

DOI: 10.1007/s13369-012-0305-3

Google Scholar

[17] E. Ohdaira, N. Masuzawa, Water content and its effect on ultrasound propagation in concrete—the possibility of NDE, Ultrasonics 38 (1-8) (2000) 546–552.

DOI: 10.1016/s0041-624x(99)00158-4

Google Scholar

[18] D Marković, B. Ćetenović, A. Vuković, V. Jokanović, T. Marković, Chapter 11- Nanosynthesized calcium-silicate-based biomaterials in endodontic treatment of young permanent teeth. Nanobiomaterials in Dentistry Applications of Nanobiomaterials. 11(2016) 269-307.

DOI: 10.1016/b978-0-323-42867-5.00011-4

Google Scholar

[19] A.W. Momber, Chapter 2- Fundamentals of Hydrodemolition, Hydrodemolition of Concrete Surfaces and Reinforced Concrete (2005) 23-65.

DOI: 10.1016/b978-185617460-2/50002-0

Google Scholar

[20] IS 13311, Part I Standard Code of Practice for Non Destructive Testing of Concrete: Part 1-Ultrasonic Pulse Velocity',, Bureau of Indian Standards, New Delhi, (1992).

Google Scholar

[21] L. Zeghichi, B. Mezghiche, A. Merzougui, L'influence de l'activation du laitier sur le comportement mécanique des bétons, Lebanese science journal. 8(2) (2007) 105 – 113.

Google Scholar

[22] Z.Z. Ismail, E.A. Al-Hashmi, Recycling of waste glass as a partial replacement for fine aggregate in concrete, Waste Management (New York, N.Y.) 29 (2009) 655–659, http://dx.doi.org/10.1016/j.wasman.2008.08.012. 18848773.

DOI: 10.1016/j.wasman.2008.08.012

Google Scholar

[23] A. Lorenzi, L.F. Caetano, J.L. Campagnolo, L.S. Lorenzi, L.C.P. Silva Filho, Application of ultrasonic pulse velocity to detect concrete flaws, E-Journal of Nondestructive Testing and Ultrasonics 11 (2015) 18430.

Google Scholar

[24] R. P. Jaya, B. H. Abu Bakar, M.A.M. Johari, M H. Wan Ibrahim, Strength and permeability properties of concrete containing rice husk ash with different grinding time, Cent Eur J Eng. 1 (2011) 103–112.

DOI: 10.2478/s13531-010-0003-4

Google Scholar

[25] X. Chen, S. Wu, J. Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Construction and Building Materials. 40 (2013) 869-874.

DOI: 10.1016/j.conbuildmat.2012.11.072

Google Scholar

[26] I.B. Topçu, M. Canbaz, Properties of concrete containing waste glass, Cement and Concrete Research 34 (2004) 267–274, http://dx.doi.org/10.1016/j.cemconres.2003.07.003.

DOI: 10.1016/j.cemconres.2003.07.003

Google Scholar

[27] S.B. Park, B.C. Lee, J.H. Kim, Studies on mechanical properties of concrete containing waste glass aggregate, Cement and Concrete Research 34 (2004) 2181–2189, http://dx.doi.org/10.1016/j.cemconres.2004.02.006.

DOI: 10.1016/j.cemconres.2004.02.006

Google Scholar

[28] S. de Castro, J. de Brito, Evaluation of the durability of concrete made with crushed glass aggregates, Journal of Cleaner Production 41 (2013) 7–14, http://dx.doi.org/10.1016/ j.jclepro.2012.09.021.

DOI: 10.1016/j.jclepro.2012.09.021

Google Scholar

[29] Y. Jani, W. Hogland, Waste glass in the production of cement and concrete – A review, J. Environ. Chem. Eng. 2(3) (2014) 1767–1775.

Google Scholar

[30] P. Sikora, A. Augustyniak, K. Cendrowski, E. Horszczaruk, T. Rucinska, P. Nawrotek,.and E. Mijowska, Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials, Mater. 9(8) (2016) 701. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512523/pdf/materials-09-00701.pdf.

DOI: 10.3390/ma9080701

Google Scholar

[31] M. Batayneh, I. Marie, I. Asi, Use of selected waste materials in concrete mixes, Waste Management (New York, N.Y.) 27 (2007) 1870–1876, http://dx.doi.org/10.1016/j.wasman. 2006.07.026. 17084070.

DOI: 10.1016/j.wasman.2006.07.026

Google Scholar

[32] M. Mageswari, B. Vidivelli, The use of sheet glass powder as fine aggregate replacement in concrete, Open Civil Engineering Journal 4 (2010) 65–71, http://dx.doi.org/10.2174/ 1874149501004010065.

DOI: 10.2174/18741495010040100065

Google Scholar

[33] N. Degirmenci, A. Yilmaz, O. Cakir, Utilization of waste glass as sand replacement in cement mortar, Indian Journal of Engineering and Materials Sciences 18 (2011) 303–308.

Google Scholar

[34] K.H. Tan, H. Du, Use of waste glass as sand in mortar. Part I. Fresh, mechanical and durability properties, Cement and Concrete Composites 35 (2013) 109–117, http://dx.doi.org/10.1016/ j.cemconcomp.2012.08.028.

DOI: 10.1016/j.cemconcomp.2012.08.028

Google Scholar

[35] R. Idir, M. Cyr, A. Tagnit-Hamou, Use of fine glass as ASR inhibitor in glass aggregate mortars, Construction and Building Materials 24 (2010) 1309–1312, http://dx.doi.org/10.1016/ j.conbuildmat.2009.12.030.

DOI: 10.1016/j.conbuildmat.2009.12.030

Google Scholar

[36] I. Abdalmajeed, F. Fahem Alkhafaji, A. Abduljabbar Alsaeedi. 2018. Investigating the Effect of Different Forms of Gravel as an Aggregate on Compressive Strength of Concrete. Proceedings of 104th IASTEM International Conference, Dubai, UAE, 1st-2nd February (2018) 7-11.

Google Scholar

[37] S. Saggai, S. Dahmani, M. Boulifa, A. Debbabi. Waste Glass Powder in mortar: technical and environmental effects. Conférence Internationale surles Matériaux, le Patrimoine etl'Environnement en Zones Arides.Université Ahmed DRAIA, Adrar 17 & 18 février (2019), 101-1 to 101-8.

Google Scholar