[1]
S.U.S. Choi, Z.G. Zhang, P. Keblinski, Nanofluids, in: H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 6, American Scientific Publishers, Los Angles, California, USA, 2004, 757–773.
Google Scholar
[2]
P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Mater. Today 8 (2005) 36–44.
DOI: 10.1016/s1369-7021(05)70936-6
Google Scholar
[3]
Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S.I. Cheong, Y.C. Ahn, et al., Production and dispersion stability of nanoparticles in nanofluids, Powder Technol. 186 (2008) 145–153.
DOI: 10.1016/j.powtec.2007.11.020
Google Scholar
[4]
Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technol. 196 (2009) 89–101.
DOI: 10.1016/j.powtec.2009.07.025
Google Scholar
[5]
D. Wu, H. Zhu, L. Wang, L. Liu, Critical issues in nanofluids preparation, characterization and thermal conductivity, Current Nanosci. 5 (2009) 103–112.
DOI: 10.2174/157341309787314548
Google Scholar
[6]
W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp Therm. Fluid Sci. 33 (2009) 706–714.
DOI: 10.1016/j.expthermflusci.2009.01.005
Google Scholar
[7]
T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng. 30 (2010) 2213–2218.
DOI: 10.1016/j.applthermaleng.2010.05.036
Google Scholar
[8]
A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. Heat Mass Transf. 55 (2012) 1529–1535.
DOI: 10.1016/j.ijheatmasstransfer.2011.11.004
Google Scholar
[9]
L.S. Sundar, M.K. Singh, A. Sousa, Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications, Int. Commun. Heat Mass Transf. 44 (2013) 7–14.
DOI: 10.1016/j.icheatmasstransfer.2013.02.014
Google Scholar
[10]
Z. Said, R. Saidur, A. Hepbasli, N.A. Rahim, New thermophysical properties of water based TiO2 nanofluid—the hysteresis phenomenon revisited, Int. Commun. Heat Mass Transf. 58 (2014) 85–95.
DOI: 10.1016/j.icheatmasstransfer.2014.08.034
Google Scholar
[11]
E. Zarifi, G. Jahanfarnia, Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor. Prog. Nucl. Energy 73 (2014) 140–152.
DOI: 10.1016/j.pnucene.2014.02.004
Google Scholar
[12]
H.M. Ali, H. Ali, H. Liaquat, H.T.B. Maqsood, M.A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids, Energy 84 (2015) 317–324.
DOI: 10.1016/j.energy.2015.02.103
Google Scholar
[13]
M. Sheikholeslami, Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin, J. Mol. Liq. 259 (2018) 424-438.
DOI: 10.1016/j.molliq.2018.03.006
Google Scholar
[14]
T.A. Alkanhal, M. Sheikholeslami, M. Usman, R.U. Haq, A.S. Al-Ahmadi, I. Tlili, Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source, Int. J. Heat Mass Transf. 139 (2019) 87–94.
DOI: 10.1016/j.ijheatmasstransfer.2019.05.006
Google Scholar
[15]
M.A. Nazari, M.H. Ahmadi, M. Sadeghzadeh, et al., A review on application of nanofluid in various types of heat pipes, J. Cent. South Univ. 26 (2019) 1021–1041.
DOI: 10.1007/s11771-019-4068-9
Google Scholar
[16]
A.C.V. Ramudu, K.A. Kumar, V. Sugunamma, N. Sandeep, Heat and mass transfer in MHD Casson nanofluid flow past a stretching sheet with thermophoresis and Brownian motion, Heat Transfer (2020) 1– 18. https://doi.org/10.1002/htj.21865.
DOI: 10.1002/htj.21865
Google Scholar
[17]
W. Yu, D. M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, Appl. Phys. Lett. 96 (2010) 213109.
DOI: 10.1063/1.3435487
Google Scholar
[18]
W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Comparative Review of Turbulent Heat Transfer of Nanofluids, Int. J. Heat Mass Transfer 55 (2012) 5380–5396.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.034
Google Scholar
[19]
K.A. Kumar, V. Sugunamma, N. Sandeep, M.T. Mustafa, Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink, Sci. Rep. 9 (2019) 14706.
DOI: 10.1038/s41598-019-51242-5
Google Scholar
[20]
B. Ramadevi, K.A. Kumar, V. Sugunamma, N. Sandeep, Influence of non-uniform heat source/sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier's law, Pramana – J. Phys. 93 (2019) 86.
DOI: 10.1007/s12043-019-1847-7
Google Scholar
[21]
I.E. Mouromtseff, Water and forced-air cooling of vacuum tubes, Proceedings of the IRE 30 (1942) 190–205.
DOI: 10.1109/jrproc.1942.234654
Google Scholar
[22]
M.V. Bozorg, M.H. Doranehgard, K. Hong, Q. Xiong, CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid, Renew. Energ. 145 (2020) 2598-2614.
DOI: 10.1016/j.renene.2019.08.042
Google Scholar
[23]
H.M. Ali, In tube convection heat transfer enhancement: SiO2 aqua based nanofluids, J. Mol. Liq. 308 (2020) 113031.
DOI: 10.1016/j.molliq.2020.113031
Google Scholar
[24]
A. Bibi, H. Xu, Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions, Sci. Rep. 10 (2020) 11499.
DOI: 10.1038/s41598-020-68409-0
Google Scholar
[25]
I. Tlili, M.T. Mustafa, A.K. Kumar, N. Sandeep, Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid, Sci. Rep. 10 (2020) 6677.
DOI: 10.1038/s41598-020-63708-y
Google Scholar
[26]
E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al-Ansari, An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09760-2.
DOI: 10.1007/s10973-020-09760-2
Google Scholar
[27]
J.A. Eastman, S.U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, Novel thermal properties of nanostructured materials, Material Science Forum 312-314 (1999) 629–634.
DOI: 10.4028/www.scientific.net/msf.312-314.629
Google Scholar
[28]
Y. Xuan, W. Roetzel, Conceptions for heat transfer correlations of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[29]
I. Ishihara, T. Fukui, R. Matsumoto, Natural convection in a vertical rectangular enclosure with symmetrically localized heating and cooling zones, Int. J. Heat Fluid Flow 23 (2002) 366-372.
DOI: 10.1016/s0142-727x(02)00184-4
Google Scholar
[30]
J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transfer 128 (2006) 240–250.
DOI: 10.1115/1.2150834
Google Scholar
[31]
R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component System, I and EC Fund. 1 (1962) 187–191.
Google Scholar
[32]
X. Zhang, H.M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, J. Appl. Phys. 100 (2006) 044325.
DOI: 10.1063/1.2259789
Google Scholar
[33]
J.C. Maxwell-Garnett, Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A 203 (1904) 385-420.
Google Scholar
[34]
F.J. Wasp, Solid-liquid slurry pipeline transportation, Berlin, Trans Tech, (1977).
Google Scholar
[35]
H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952) 571–581.
Google Scholar
[36]
E.B. Öğüt, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Int. J. Therm. Sci. 48 (2009) 2063-2073.
DOI: 10.1016/j.ijthermalsci.2009.03.014
Google Scholar
[37]
S. Ferrouillat, A. Bontemps, J.P. Ribeiro, J.A. Gruss, O. Soriano, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, Int. J. Heat Fluid Flow 32 (2011) 424–439.
DOI: 10.1016/j.ijheatfluidflow.2011.01.003
Google Scholar
[38]
J. Sarkar, A Critical Review on Convective Heat Transfer Correlations of Nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 3271–3277.
DOI: 10.1016/j.rser.2011.04.025
Google Scholar
[39]
A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani, An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system, Energ. Convers. Manage. 142 (2017) 547-558.
DOI: 10.1016/j.enconman.2017.03.076
Google Scholar
[40]
H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326-1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar
[41]
A.E. Bergles, Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment IEEE T. Compon. Pack. T. 26 (2003) 6-15.
Google Scholar
[42]
R.E. Simons, Comparing Heat Transfer Rates of Liquid Coolants Using the Mouromtseff Number, Electronic Cool. 12 (2006).
Google Scholar
[43]
H. Etherington, (Ed) Nuclear Engineering Handbook New York, USA, McGraw-Hill Book Company, Inc., (1958).
Google Scholar
[44]
R.S. Vajjha, D.K. Das, A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power, Int. J. Heat Mass Transfer, 55 (2012) 4063–4078.
DOI: 10.1016/j.ijheatmasstransfer.2012.03.048
Google Scholar
[45]
W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, Appl. Phys. Lett. 96 (2010) 213109.
DOI: 10.1063/1.3435487
Google Scholar
[46]
M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow 30 (2009) 691–699.
DOI: 10.1016/j.ijheatfluidflow.2009.02.005
Google Scholar
[47]
D. Zhong, H. Zhong, T. Wen, Investigation on the thermal properties, heat transfer and flow performance of a highly self-dispersion TiO2 nanofluid in a multiport mini channel, Int. Commun. Heat Mass 117 (2020) 104783.
DOI: 10.1016/j.icheatmasstransfer.2020.104783
Google Scholar
[48]
D. Senthilkumar, S. Wongwises, Enhancing thermal conductivity of water by using TiC nanopowder with cryogenic treatment, Mater. Res. Innov. 24 (2020) 145-151.
DOI: 10.1080/14328917.2019.1619260
Google Scholar
[49]
L. Yang, K. Du, Z. Zhang, Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG-water nanofluids, Int. J. Mech. Sci. 168 (2020) 105310.
DOI: 10.1016/j.ijmecsci.2019.105310
Google Scholar
[50]
L. Yang, K. Du, A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J. Therm. Anal. Calorim. 140 (2020) 2033–(2054).
DOI: 10.1007/s10973-019-08987-y
Google Scholar
[51]
F. Pourfayaz, N. Sanjarian, A. Kasaeian, et al., An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels, J. Therm. Anal. Calorim. 131 (2018) 1577–1586.
DOI: 10.1007/s10973-017-6500-4
Google Scholar