An Analytical Study to Compare the Heat Transfer Performances of Water-Based TiO2, SiO2, TiC and SiC Nanofluids

Article Preview

Abstract:

The thermophysical properties as well as the thermal performance of a nanofluid can be altered upon varying the nanoparticle type and/or nanoparticle volume concentration. Herein, the effects of variable nanoparticle concentration on water-based TiO2, SiO2, TiC, and SiC nanofluids have been studied analytically. The dispersion effects of 1-4% nanoparticle on the single-phase forced convection heat transfer performance of the nanofluids have been investigated. The effective thermophysical properties of the nanofluids are determined adopting the general correlations. The flow velocities of the nanofluids relative to their base fluids are assumed to be constant. Mouromtseff number has been employed as a convenient figure of merit to compare the nanofluids under fully developed internal laminar and turbulent flow conditions. The results indicate an increase in effective density, thermal conductivity, and dynamic viscosity of the nanofluids. Nanofluids containing carbide suspensions exhibit superior heat transfer properties compared to those having oxide suspensions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-128

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, Z.G. Zhang, P. Keblinski, Nanofluids, in: H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 6, American Scientific Publishers, Los Angles, California, USA, 2004, 757–773.

Google Scholar

[2] P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Mater. Today 8 (2005) 36–44.

DOI: 10.1016/s1369-7021(05)70936-6

Google Scholar

[3] Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S.I. Cheong, Y.C. Ahn, et al., Production and dispersion stability of nanoparticles in nanofluids, Powder Technol. 186 (2008) 145–153.

DOI: 10.1016/j.powtec.2007.11.020

Google Scholar

[4] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technol. 196 (2009) 89–101.

DOI: 10.1016/j.powtec.2009.07.025

Google Scholar

[5] D. Wu, H. Zhu, L. Wang, L. Liu, Critical issues in nanofluids preparation, characterization and thermal conductivity, Current Nanosci. 5 (2009) 103–112.

DOI: 10.2174/157341309787314548

Google Scholar

[6] W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp Therm. Fluid Sci. 33 (2009) 706–714.

DOI: 10.1016/j.expthermflusci.2009.01.005

Google Scholar

[7] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng. 30 (2010) 2213–2218.

DOI: 10.1016/j.applthermaleng.2010.05.036

Google Scholar

[8] A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. Heat Mass Transf. 55 (2012) 1529–1535.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.004

Google Scholar

[9] L.S. Sundar, M.K. Singh, A. Sousa, Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications, Int. Commun. Heat Mass Transf. 44 (2013) 7–14.

DOI: 10.1016/j.icheatmasstransfer.2013.02.014

Google Scholar

[10] Z. Said, R. Saidur, A. Hepbasli, N.A. Rahim, New thermophysical properties of water based TiO2 nanofluid—the hysteresis phenomenon revisited, Int. Commun. Heat Mass Transf. 58 (2014) 85–95.

DOI: 10.1016/j.icheatmasstransfer.2014.08.034

Google Scholar

[11] E. Zarifi, G. Jahanfarnia, Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor. Prog. Nucl. Energy 73 (2014) 140–152.

DOI: 10.1016/j.pnucene.2014.02.004

Google Scholar

[12] H.M. Ali, H. Ali, H. Liaquat, H.T.B. Maqsood, M.A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids, Energy 84 (2015) 317–324.

DOI: 10.1016/j.energy.2015.02.103

Google Scholar

[13] M. Sheikholeslami, Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin, J. Mol. Liq. 259 (2018) 424-438.

DOI: 10.1016/j.molliq.2018.03.006

Google Scholar

[14] T.A. Alkanhal, M. Sheikholeslami, M. Usman, R.U. Haq, A.S. Al-Ahmadi, I. Tlili, Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source, Int. J. Heat Mass Transf. 139 (2019) 87–94.

DOI: 10.1016/j.ijheatmasstransfer.2019.05.006

Google Scholar

[15] M.A. Nazari, M.H. Ahmadi, M. Sadeghzadeh, et al., A review on application of nanofluid in various types of heat pipes, J. Cent. South Univ. 26 (2019) 1021–1041.

DOI: 10.1007/s11771-019-4068-9

Google Scholar

[16] A.C.V. Ramudu, K.A. Kumar, V. Sugunamma, N. Sandeep, Heat and mass transfer in MHD Casson nanofluid flow past a stretching sheet with thermophoresis and Brownian motion, Heat Transfer (2020) 1– 18. https://doi.org/10.1002/htj.21865.

DOI: 10.1002/htj.21865

Google Scholar

[17] W. Yu, D. M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, Appl. Phys. Lett. 96 (2010) 213109.

DOI: 10.1063/1.3435487

Google Scholar

[18] W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Comparative Review of Turbulent Heat Transfer of Nanofluids, Int. J. Heat Mass Transfer 55 (2012) 5380–5396.

DOI: 10.1016/j.ijheatmasstransfer.2012.06.034

Google Scholar

[19] K.A. Kumar, V. Sugunamma, N. Sandeep, M.T. Mustafa, Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink, Sci. Rep. 9 (2019) 14706.

DOI: 10.1038/s41598-019-51242-5

Google Scholar

[20] B. Ramadevi, K.A. Kumar, V. Sugunamma, N. Sandeep, Influence of non-uniform heat source/sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier's law, Pramana – J. Phys. 93 (2019) 86.

DOI: 10.1007/s12043-019-1847-7

Google Scholar

[21] I.E. Mouromtseff, Water and forced-air cooling of vacuum tubes, Proceedings of the IRE 30 (1942) 190–205.

DOI: 10.1109/jrproc.1942.234654

Google Scholar

[22] M.V. Bozorg, M.H. Doranehgard, K. Hong, Q. Xiong, CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid, Renew. Energ. 145 (2020) 2598-2614.

DOI: 10.1016/j.renene.2019.08.042

Google Scholar

[23] H.M. Ali, In tube convection heat transfer enhancement: SiO2 aqua based nanofluids, J. Mol. Liq. 308 (2020) 113031.

DOI: 10.1016/j.molliq.2020.113031

Google Scholar

[24] A. Bibi, H. Xu, Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions, Sci. Rep. 10 (2020) 11499.

DOI: 10.1038/s41598-020-68409-0

Google Scholar

[25] I. Tlili, M.T. Mustafa, A.K. Kumar, N. Sandeep, Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid, Sci. Rep. 10 (2020) 6677.

DOI: 10.1038/s41598-020-63708-y

Google Scholar

[26] E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al-Ansari, An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09760-2.

DOI: 10.1007/s10973-020-09760-2

Google Scholar

[27] J.A. Eastman, S.U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, Novel thermal properties of nanostructured materials, Material Science Forum 312-314 (1999) 629–634.

DOI: 10.4028/www.scientific.net/msf.312-314.629

Google Scholar

[28] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlations of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[29] I. Ishihara, T. Fukui, R. Matsumoto, Natural convection in a vertical rectangular enclosure with symmetrically localized heating and cooling zones, Int. J. Heat Fluid Flow 23 (2002) 366-372.

DOI: 10.1016/s0142-727x(02)00184-4

Google Scholar

[30] J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transfer 128 (2006) 240–250.

DOI: 10.1115/1.2150834

Google Scholar

[31] R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component System, I and EC Fund. 1 (1962) 187–191.

Google Scholar

[32] X. Zhang, H.M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, J. Appl. Phys. 100 (2006) 044325.

DOI: 10.1063/1.2259789

Google Scholar

[33] J.C. Maxwell-Garnett, Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A 203 (1904) 385-420.

Google Scholar

[34] F.J. Wasp, Solid-liquid slurry pipeline transportation, Berlin, Trans Tech, (1977).

Google Scholar

[35] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952) 571–581.

Google Scholar

[36] E.B. Öğüt, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Int. J. Therm. Sci. 48 (2009) 2063-2073.

DOI: 10.1016/j.ijthermalsci.2009.03.014

Google Scholar

[37] S. Ferrouillat, A. Bontemps, J.P. Ribeiro, J.A. Gruss, O. Soriano, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, Int. J. Heat Fluid Flow 32 (2011) 424–439.

DOI: 10.1016/j.ijheatfluidflow.2011.01.003

Google Scholar

[38] J. Sarkar, A Critical Review on Convective Heat Transfer Correlations of Nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 3271–3277.

DOI: 10.1016/j.rser.2011.04.025

Google Scholar

[39] A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani, An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system, Energ. Convers. Manage. 142 (2017) 547-558.

DOI: 10.1016/j.enconman.2017.03.076

Google Scholar

[40] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008) 1326-1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[41] A.E. Bergles, Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment IEEE T. Compon. Pack. T. 26 (2003) 6-15.

Google Scholar

[42] R.E. Simons, Comparing Heat Transfer Rates of Liquid Coolants Using the Mouromtseff Number, Electronic Cool. 12 (2006).

Google Scholar

[43] H. Etherington, (Ed) Nuclear Engineering Handbook New York, USA, McGraw-Hill Book Company, Inc., (1958).

Google Scholar

[44] R.S. Vajjha, D.K. Das, A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power, Int. J. Heat Mass Transfer, 55 (2012) 4063–4078.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.048

Google Scholar

[45] W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow, Appl. Phys. Lett. 96 (2010) 213109.

DOI: 10.1063/1.3435487

Google Scholar

[46] M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow 30 (2009) 691–699.

DOI: 10.1016/j.ijheatfluidflow.2009.02.005

Google Scholar

[47] D. Zhong, H. Zhong, T. Wen, Investigation on the thermal properties, heat transfer and flow performance of a highly self-dispersion TiO2 nanofluid in a multiport mini channel, Int. Commun. Heat Mass 117 (2020) 104783.

DOI: 10.1016/j.icheatmasstransfer.2020.104783

Google Scholar

[48] D. Senthilkumar, S. Wongwises, Enhancing thermal conductivity of water by using TiC nanopowder with cryogenic treatment, Mater. Res. Innov. 24 (2020) 145-151.

DOI: 10.1080/14328917.2019.1619260

Google Scholar

[49] L. Yang, K. Du, Z. Zhang, Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG-water nanofluids, Int. J. Mech. Sci. 168 (2020) 105310.

DOI: 10.1016/j.ijmecsci.2019.105310

Google Scholar

[50] L. Yang, K. Du, A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J. Therm. Anal. Calorim. 140 (2020) 2033–(2054).

DOI: 10.1007/s10973-019-08987-y

Google Scholar

[51] F. Pourfayaz, N. Sanjarian, A. Kasaeian, et al., An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels, J. Therm. Anal. Calorim. 131 (2018) 1577–1586.

DOI: 10.1007/s10973-017-6500-4

Google Scholar