[1]
O.D. Makinde, On the thermal decomposition of reactive materials of variable thermal conductivity and heat loss characteristics in a long pipe, J. Energetic Mat. 30 (2012) 283- 298.
DOI: 10.1080/07370652.2011.566598
Google Scholar
[2]
O.D. Makinde, Strongly exothermic explosions in a cylindrical pipe: a case study of series summation technique, Mech. Res. Commun. 32 (2005) 191–195.
DOI: 10.1016/j.mechrescom.2004.02.008
Google Scholar
[3]
G. Nyamadzawo, W. Gwenzi, A. Kanda1, A. Kundhlande, C. Masona, Understanding the Causes, socio-economic and environmental impacts, and management of veld fires in tropical Zimbabwe, Fire Science Reviews 2(2) (2013) 1 – 13.
DOI: 10.1186/2193-0414-2-2
Google Scholar
[4]
R.S. Lebelo, O.D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe, Adv. Mech. Eng. 7(12) (2015) 1–11.
DOI: 10.1063/1.4898446
Google Scholar
[5]
B.H. Hamza, E.S. Massawe, O.D. Makinde, Analysis of transient heating due to exothermic reaction in a stockpile of combustible material, Int. J. Phys. Sci. 6 (2011) 4337 – 4341.
Google Scholar
[6]
R.S. Lebelo, Convective and radiative heat loss impact on CO2 emission, O2 depletion and thermal stability in a reactive slab of variable thermal conductivity, IEEE Conference Record 36345.
DOI: 10.1109/wsmeap.2015.7338218
Google Scholar
[7]
E. Balakrishnan, A. Swift, G.C. Wake, Critical values for some non-class geometries in thermal ignition theory, Math. Comp. Modell 24 (1996) 1-10.
DOI: 10.1016/0895-7177(96)00133-1
Google Scholar
[8]
A.A. Lacey, G.C. Wake, Thermal ignition with variable thermal conductivity, J. Appl. Math. 28 (1982) 23 – 39.
DOI: 10.1093/imamat/28.1.23
Google Scholar
[9]
C. Lohrer, M. Schmidt, U. Krause, A study on the influence of liquid water and water vapour on the self-ignition of lignite coal-experiments and numerical simulations, J. Loss Prev. Process. Ind. 18 (2005) 167–177.
DOI: 10.1016/j.jlp.2005.03.006
Google Scholar
[10]
A.M.K. Legodi, O.D. Makinde, A numerical study of steady state exothermic reaction in a slab with convective boundary conditions, Int. J. Phys. Sci. 6(10) (2011) 2541-2549.
Google Scholar
[11]
R.S. Lebelo, Transient heat and reactant consumption investigation in a cylindrical pipe of variable thermal conductivity, DDF 392 (2019) 178-188.
DOI: 10.4028/www.scientific.net/ddf.392.178
Google Scholar
[12]
R.S. Lebelo, Thermal stability investigation in a reactive sphere of combustible material, Adv. Math.
Google Scholar
[13]
R.S. Lebelo, R.K. Mahlobo, S.O. Adesanya, Reactant consumption and thermal decomposition analysis in a two-step combustible slab, DDF 393 (2019) 59-72.
DOI: 10.4028/www.scientific.net/ddf.393.59
Google Scholar
[14]
D. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum Press, New York, (1969).
Google Scholar
[15]
S. VanBeek, et al., Thermal stability analysis and modelling of advanced perpendicular magnetic tunnel Junctions, AIP ADVANCES 8 (2018) 055909-1 - 055909-6.
DOI: 10.1063/1.5007690
Google Scholar
[16]
A. Klapiszewski, K. Bula, M. Sobczak, T. Jesionowski, Influence of processing conditions on the thermal stability and mechanical properties of pp/silica-lignin composite, International Journal of Polymer Science (2016) ID 1627258, 1 – 9.
DOI: 10.1155/2016/1627258
Google Scholar
[17]
Y. Kuo, Application of thermal convection to stability analysis of lithograph, Heat Mass Transfer 47 (2011) 1395–1399.
DOI: 10.1007/s00231-011-0798-4
Google Scholar
[18]
M. Shamsipur, S.M. Pourmortazavi, A.A.M. Beigi, R. Heydari, M. Khatibi, Thermal stability And decomposition kinetic studies of acyclovir and zidovudine drug compounds, AAPS Pharm Sci Tech 14 (2013) 287 – 293.
DOI: 10.1208/s12249-012-9916-y
Google Scholar
[19]
H. Vahabi, et al., Thermal stability and flammability behavior of Poly(3-hydroxybutyrate) (PHB) based composites, Materials 12 (2239) (2019) 1 – 14.
DOI: 10.3390/ma12142239
Google Scholar
[21]
O.D. Makinde, M.S. Tshehla, Analysis of thermal stability in a convecting and radiating two- step reactive slab, Adv. Mech. Eng. (2013) 1-9.
DOI: 10.1155/2013/294961
Google Scholar
[22]
R.S. Lebelo, On heat transfer of a two-step radiating slab of variable thermal conductivity, MSF 987 (2020) 137-141.
DOI: 10.4028/www.scientific.net/msf.987.137
Google Scholar
[23]
R.S. Lebelo, R.K. Mahlobo, K.C. Moloi, Thermal Stability Analysis in a Two-Step Reactive Cylindrical Stockpile, AJAS 15 (2) (2018) 124-131.
DOI: 10.3844/ajassp.2018.124.131
Google Scholar
[24]
R.S. Lebelo, K.C. Moloi, K.O. Okosun, M. Mukamuri, S.O. Adesanya, M.S. Muthuvalu, Two- step low-temperature oxidation for thermal stability analysis of a combustible sphere, AEJ 57 (2018) 2829–2835.
DOI: 10.1016/j.aej.2018.01.006
Google Scholar