[1]
J. Yovogan, J. Degan, Effect of anisotropic permeability on convective heat transfer through a porous riverbed underlying a fluid layer, J. Eng Math. 18 (2013) 127-140.
DOI: 10.1007/s10665-012-9605-6
Google Scholar
[2]
P. Bera, A. Khalili, Double-diffusive natural convection in an anisotropic porous cavity with opposing buoyancy forces: multi-solutions and oscillations. Int. J. of Heat and Mass Transfer 45 (2002) 3205-3222.
DOI: 10.1016/s0017-9310(02)00024-8
Google Scholar
[3]
T. Karmakar, G.P.R. Sekhar, Effect of anisotropic permeability on fluid flow through composite porous channel, Jr. Eng. Math. 100 (2016) 33-51.
DOI: 10.1007/s10665-015-9831-9
Google Scholar
[4]
G. Degan, S. Zohoun, P. Vasseur, Forced convection in horizontal porous channels with hydrodynamic anisotropy. International Journal of Heat and Mass Transfer 45 (2002) 3181- 3188.
DOI: 10.1016/s0017-9310(02)00032-7
Google Scholar
[5]
P.A. Selkin, J.S. Gee, L. Tauxe, W.P. Meurer, A.J. Newell, The effect of remanence anisotropy on Paleointensity estimate: a case study from the Archean Stillwater Complex. Earth and Planetary Science Latters 183 (2000) 403-416.
DOI: 10.1016/s0012-821x(00)00292-2
Google Scholar
[6]
T. Nilsen, L. Storesletten, An analytical study on natural convection in isotropic and anisotropic porous channels, J. of Heat Transfer 112 (1990) 396-401.
DOI: 10.1115/1.2910390
Google Scholar
[7]
M. Mobedi, O. Cekmer, I. Pop, Forced convection heat transfer inside an anisotropic porous channel with oblique principal axes. Effect of viscous dissipation, International Journal of Thermal Science, 49 (2010) 1984 - (1993).
DOI: 10.1016/j.ijthermalsci.2010.06.002
Google Scholar
[8]
A. Shapiro, E. Fedorovich, Natural convection in a stably stratified fluid along vertical plates and cylinders with temporally periodic surface temperature variation, J. Fluid Mech 546 (2006) 295-311.
DOI: 10.1017/s0022112005007159
Google Scholar
[9]
R. K. Deka, A. Paul, Convectively driven flow past an infinite moving vertical cylinder with thermal and mass stratification, Pramana Journal of Physics 81(4) (2013) 641-665.
DOI: 10.1007/s12043-013-0604-6
Google Scholar
[10]
A. Shapiro, E. Fedorovich, Prandtl number dependence of unsteady natural convection along a vertical plate in a stably stratified fluid. Int. Journal of Heat and Mass Transfer 47 (2004) 4911-4927.
DOI: 10.1016/j.ijheatmasstransfer.2004.04.035
Google Scholar
[11]
A. Shapiro, E. Fedorovich, Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. Journal of fluid mech. 498 (2004) 333-352.
DOI: 10.1017/s0022112003006803
Google Scholar
[12]
R. K. Deka, A. Paul, Transient free convection flow past an infinite moving vertical cylinder in a stably stratified fluid. Journal of heat transfer 134 (2012) 1-8.
DOI: 10.1115/1.4005205
Google Scholar
[13]
E. Magyari, I. Pop, B. Keller, Unsteady free convection along an infinite vertical flat plate embedded in a stably stratified fluid-saturated porous medium, Transport in porous media 62 (2006) 233-249.
DOI: 10.1007/s11242-005-1292-6
Google Scholar
[14]
G. Degan, P. Vasseur, Aiding mixed convection through a vertical anisotropic porous channel with oblique principal axes, Int. Journal of Engr. Scie. 40 (2002) 193-209.
DOI: 10.1016/s0020-7225(01)00012-x
Google Scholar
[15]
R. K. Deka, A. Bhattacharya, Magneto-hydrodynamic (MHD) flow past an infinite vertical plate immersed in a stably stratified fluid, International Journal of the Physical Sciences,6(24) (2011) 5831-5836.
Google Scholar
[16]
A.R.A. Khaled, K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, International Journal of Heat and Mass Transfer 46 (2003) 4989–003.
DOI: 10.1016/s0017-9310(03)00301-6
Google Scholar
[17]
A. C. Liakopoulos, Darcy's coefficient of permeability as symmetric tensor of second rank, Hydrological Sciences Journal, 10(3) (1965) 41-48.
Google Scholar
[18]
R. Ziyaddin, K. Huseyin, Two-phase steady flow along a horizontal glass pipe in the presence of the magnetic and electrical fields, Int Journal of heat and fluid flow 29 (2007) 263-268.
DOI: 10.1016/j.ijheatfluidflow.2007.09.003
Google Scholar
[19]
B. K. Jha, S. Isa, Computational treatment of MHD transient natural convection flow in a vertical channel due to symmetric heating in the presence of induced magnetic field, Journal of the physical society of Japan, 82 (2013) 1-9.
DOI: 10.7566/jpsj.82.084401
Google Scholar
[20]
B. K. Jha, M. K. Musa, Unsteady natural convection Couette flow of heat generating/absorbing fluid between vertical parallel plates filled with porous material, Appl. Math. Mech.-Engl. Ed, 33(3) (2012) 303–314.
DOI: 10.1007/s10483-012-1551-8
Google Scholar
[21]
B. C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy, K. Ganesh Kumar, MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet, Informatics in Medicine Unlocked, 9 (2017) 123–132.
DOI: 10.1016/j.imu.2017.07.006
Google Scholar
[22]
B.J. Gireesha, K. Ganesh Kumar, G.K. Ramesh, B.C. Prasannakumara, Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink, Results in Physics, 9 (2018) 1555–1563.
DOI: 10.1016/j.rinp.2018.04.006
Google Scholar
[23]
M. M. Nandeppanavar, B.C. Prasannakumara, J. M. Shilpa, Journal nano fluids, 7(4) (2018) 635 - 645.
Google Scholar