Influence of Magnetic Field on Level of Linearly Polarized Laser Beam Passing through Faraday Crystal

Article Preview

Abstract:

Many natural materials have the ability to rotate the polarization level of linearly polarized laser beam and pass through it. This phenomenon is called optical activity. In the event that a light beam (linearly polarized) passes through an optically active material, such as a quartz crystal, and projected vertically on the optical axis, the output beam will be polarized equatorially, and the vibration level will rotate at a certain angle [1], [2], [3]. A number of crystals, liquids, solutions, and vapors rotate the electric field of linearly polarized light that passes through them [4], [5], [6], [7]. Many different physical effects are applied to optical isotropic and transparent materials that cause them to behave as optical active materials, where they are able to rotate the polarization level of the polarized light linearly and pass through it [8], [9], [10]. These effects include mechanical strength, electric field, and magnetic field. By placing one of these effects on an optically transparent medium, it changes the behavior of the light travelling through it [11].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-140

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] De Jong, J. A., A. M. Kalashnikova, R. V. Pisarev, A. M. Balbashov, A. V. Kimel, A. Kirilyuk, and Th Rasing. Effect of laser pulse propagation on ultrafast magnetization dynamics in a birefringent medium., Journal of Physics: Condensed Matter 29, no. 16: 164004, (2017).

DOI: 10.1088/1361-648x/aa5e94

Google Scholar

[2] Rangelov, Andon A. Achromatic polarization retarder realized with slowly varying linear and circular birefringence., Optics letters 36, no. 14: 2716-2718, (2011).

DOI: 10.1364/ol.36.002716

Google Scholar

[3] Barron, Laurence D. The development of biomolecular Raman optical activity spectroscopy., Biomedical Spectroscopy and Imaging 4, no. 3: 223-253, (2015).

DOI: 10.3233/bsi-150113

Google Scholar

[4] Abudagel, Giuma Saleh Isa. Experimental characterization of magneto-optical properties of Faraday crystal applied in magnetic field sensor., PhD diss., Univerzitet u Beogradu-Elektrotehnički fakultet, (2019).

Google Scholar

[5] Sargazi, Mona, Matthew R. Linford, and Massoud Kaykhaii. Liquid Crystals in Analytical Chemistry: A Review., Critical reviews in analytical chemistry 49, no. 3: 243-255, (2019).

DOI: 10.1080/10408347.2018.1512399

Google Scholar

[6] Starobor, Aleksey V., and Oleg V. Palashov. Anisotropic CeF3 crystal as media for high-power Faraday isolators (Conference Presentation)." In High-Power, High-Energy, and High-Intensity Laser Technology IV,, International Society for Optics and Photonics vol. 11033, p. 110330M., (2019).

DOI: 10.1117/12.2520523

Google Scholar

[7] Sozinov, A., A. A. Likhachev, and K. Ullakko. Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain., IEEE transactions on magnetics 38, no. 5: 2814-2816, (2002).

DOI: 10.1109/tmag.2002.803567

Google Scholar

[8] Collins, Joel T., Christian Kuppe, David C. Hooper, Concita Sibilia, Marco Centini, and Ventsislav K. Valev. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends., Adv. Opt. Mater 6, no. 2: 1700182, (2018).

DOI: 10.1002/adom.201700182

Google Scholar

[9] Tuchin, Valery V. Polarized light interaction with tissues., Journal of biomedical optics 21, no. 7: 071114, (2016).

DOI: 10.1117/1.jbo.21.7.071114

Google Scholar

[10] Bradley, A. E., C. Hardacre, J. D. Holbrey, S. Johnston, S. E. J. McMath, and M. Nieuwenhuyzen. Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts., Chemistry of materials 14, no. 2: 629-635.

DOI: 10.1021/cm010542v

Google Scholar

[11] Henry, Paul Shala, Giovanni Vannucci, and Thomas M. Willis III. Method and apparatus for guiding an electromagnetic wave to a transmission medium., U.S. Patent 10, 291, 286, issued May 14, (2019).

Google Scholar

[12] Hellman, Frances, Axel Hoffmann, Yaroslav Tserkovnyak, Geoffrey SD Beach, Eric E. Fullerton, Chris Leighton, Allan H. MacDonald et al. Interface-induced phenomena in magnetism., Reviews of modern physics 89, no. 2: 025006, (2017).

Google Scholar

[13] Bailly-Grandvaux, Mathieu. Laser-driven strong magnetic fields and high discharge currents: measurements and applications to charged particle transport., PhD diss., (2017).

Google Scholar

[14] Loeffler, Frank J. A Faraday rotation experiment for the undergraduate physics laboratory., American Journal of Physics 51, no. 7: 661-663, (1983).

DOI: 10.1119/1.13164

Google Scholar

[15] Deeter, Merrit N., A. H. Rose, and Gordon W. Day. Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG., Journal of lightwave technology 8, no. 12: 1838-1842, (1990).

DOI: 10.1109/50.62880

Google Scholar

[16] Schreiber, Siegfried, Triveni Rao, and David H. Dowell. An Engineering Guide To Photoinjectors, Ch. 11: Diagnostics. No. DESY-2014-02867. Maschinen Koordination FLASH, (2014).

Google Scholar

[17] Iskander, Magdy F. Electromagnetic fields and waves. Waveland Press, (2013).

Google Scholar

[18] Vojna, David, Ondřej Slezák, Antonio Lucianetti, and Tomáš Mocek. Verdet constant of Magneto-Active Materials Developed for High-Power Faraday Devices., Applied Sciences 9, no. 15: 3160, (2019).

DOI: 10.3390/app9153160

Google Scholar

[19] Neugebauer, Petr. Développement d'un Spectrometre de Résonance Paramagnétique Électronique Haute Fréquence/Haut Champ Hétérodyne fonctionnant autour de 285 GHz., PhD diss., University of St. Andrews, (2010).

Google Scholar

[20] Su, C. W., S. C. Chang, and Y. C. Chang. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films., AIP Advances 3, no. 7: 072125, (2013).

DOI: 10.1063/1.4816799

Google Scholar

[21] Zarifi, Abbas. Theoretical Analysis of the Faraday Effect in Carbon Nanotubes with Arbitrary Chirality., ISRN Condensed Matter Physics (2013).

DOI: 10.1155/2013/843702

Google Scholar

[22] Sato, K., Medvedkin GA, K. Hayata, Y. Hasegawa, T. Nishi, R. Misawa, and T. Ishibashi. Magnetic and magneto-optical properties of a novel ferromagnetic semiconductor CdGeP2: Mn., Journal of the Magnetics Society of Japan 25, no. 3_2: 283-286, (2001).

DOI: 10.3379/jmsjmag.25.283

Google Scholar

[23] Korenev, V. L., I. V. Kalitukha, I. A. Akimov, V. F. Sapega, E. A. Zhukov, E. Kirstein, O. S. Ken et al. Low voltage control of exchange coupling in a ferromagnet-semiconductor quantum well hybrid structure., Nature communications 10, no. 1: 1-8, (2019).

DOI: 10.1038/s41467-019-10774-0

Google Scholar

[24] Vojna, David, Ondřej Slezák, Antonio Lucianetti, and Tomáš Mocek. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices., Applied Sciences 9, no. 15: 3160, (2019).

DOI: 10.3390/app9153160

Google Scholar

[25] Ferreira, Aires, J. Viana-Gomes, Yu V. Bludov, V. Pereira, N. M. R. Peres, and AH Castro Neto. Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids., Physical Review B 84, no. 23: 235410, (2011).

DOI: 10.1103/physrevb.84.235410

Google Scholar

[26] Korenev, V.L., I.V. Kalitukha, I.A. Akimov, V.F. Sapega, E. A. Zhukov, E. Kirstein, O. S. Ken et al. Low voltage control of exchange coupling in a ferromagnet-semiconductor quantum well hybrid structure., Nature communications 10, no. 1: 1-8, (2019).

DOI: 10.1038/s41467-019-10774-0

Google Scholar

[27] Zyoud, Samer H., Abdelkader, Atef. Characteristics of Semiconductors Laser under Influence of Magnetic Field, journal of Advanced Research in Dynamical & control Systems, 11, 682-689, (2019).

DOI: 10.5373/jardcs/v11sp10/20192858

Google Scholar

[28] Zyoud, Samer H., Abdelkader, Atef. The Influence of Magnetic Field on Pulse Distribution of SLD, Universal Journal of Electrical and Electronics Engineering. 6, (2019).

Google Scholar

[29] Zyoud, Samer H., Abdelkader, Atef. The Impact of Temperature on the Performance of Semiconductor SLD, International Journal of Advanced Science and Technology, Vol. 29 No. 06 (2020).

Google Scholar

[30] Amrani, Djlali, and P. Paradis. Malus's law of light polarization using a Computer-Based Laboratory., Latin-American Journal of Physics Education 3, no. 2: 6, (2009).

Google Scholar