[1]
De Jong, J. A., A. M. Kalashnikova, R. V. Pisarev, A. M. Balbashov, A. V. Kimel, A. Kirilyuk, and Th Rasing. Effect of laser pulse propagation on ultrafast magnetization dynamics in a birefringent medium., Journal of Physics: Condensed Matter 29, no. 16: 164004, (2017).
DOI: 10.1088/1361-648x/aa5e94
Google Scholar
[2]
Rangelov, Andon A. Achromatic polarization retarder realized with slowly varying linear and circular birefringence., Optics letters 36, no. 14: 2716-2718, (2011).
DOI: 10.1364/ol.36.002716
Google Scholar
[3]
Barron, Laurence D. The development of biomolecular Raman optical activity spectroscopy., Biomedical Spectroscopy and Imaging 4, no. 3: 223-253, (2015).
DOI: 10.3233/bsi-150113
Google Scholar
[4]
Abudagel, Giuma Saleh Isa. Experimental characterization of magneto-optical properties of Faraday crystal applied in magnetic field sensor., PhD diss., Univerzitet u Beogradu-Elektrotehnički fakultet, (2019).
Google Scholar
[5]
Sargazi, Mona, Matthew R. Linford, and Massoud Kaykhaii. Liquid Crystals in Analytical Chemistry: A Review., Critical reviews in analytical chemistry 49, no. 3: 243-255, (2019).
DOI: 10.1080/10408347.2018.1512399
Google Scholar
[6]
Starobor, Aleksey V., and Oleg V. Palashov. Anisotropic CeF3 crystal as media for high-power Faraday isolators (Conference Presentation)." In High-Power, High-Energy, and High-Intensity Laser Technology IV,, International Society for Optics and Photonics vol. 11033, p. 110330M., (2019).
DOI: 10.1117/12.2520523
Google Scholar
[7]
Sozinov, A., A. A. Likhachev, and K. Ullakko. Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain., IEEE transactions on magnetics 38, no. 5: 2814-2816, (2002).
DOI: 10.1109/tmag.2002.803567
Google Scholar
[8]
Collins, Joel T., Christian Kuppe, David C. Hooper, Concita Sibilia, Marco Centini, and Ventsislav K. Valev. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends., Adv. Opt. Mater 6, no. 2: 1700182, (2018).
DOI: 10.1002/adom.201700182
Google Scholar
[9]
Tuchin, Valery V. Polarized light interaction with tissues., Journal of biomedical optics 21, no. 7: 071114, (2016).
DOI: 10.1117/1.jbo.21.7.071114
Google Scholar
[10]
Bradley, A. E., C. Hardacre, J. D. Holbrey, S. Johnston, S. E. J. McMath, and M. Nieuwenhuyzen. Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts., Chemistry of materials 14, no. 2: 629-635.
DOI: 10.1021/cm010542v
Google Scholar
[11]
Henry, Paul Shala, Giovanni Vannucci, and Thomas M. Willis III. Method and apparatus for guiding an electromagnetic wave to a transmission medium., U.S. Patent 10, 291, 286, issued May 14, (2019).
Google Scholar
[12]
Hellman, Frances, Axel Hoffmann, Yaroslav Tserkovnyak, Geoffrey SD Beach, Eric E. Fullerton, Chris Leighton, Allan H. MacDonald et al. Interface-induced phenomena in magnetism., Reviews of modern physics 89, no. 2: 025006, (2017).
Google Scholar
[13]
Bailly-Grandvaux, Mathieu. Laser-driven strong magnetic fields and high discharge currents: measurements and applications to charged particle transport., PhD diss., (2017).
Google Scholar
[14]
Loeffler, Frank J. A Faraday rotation experiment for the undergraduate physics laboratory., American Journal of Physics 51, no. 7: 661-663, (1983).
DOI: 10.1119/1.13164
Google Scholar
[15]
Deeter, Merrit N., A. H. Rose, and Gordon W. Day. Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG., Journal of lightwave technology 8, no. 12: 1838-1842, (1990).
DOI: 10.1109/50.62880
Google Scholar
[16]
Schreiber, Siegfried, Triveni Rao, and David H. Dowell. An Engineering Guide To Photoinjectors, Ch. 11: Diagnostics. No. DESY-2014-02867. Maschinen Koordination FLASH, (2014).
Google Scholar
[17]
Iskander, Magdy F. Electromagnetic fields and waves. Waveland Press, (2013).
Google Scholar
[18]
Vojna, David, Ondřej Slezák, Antonio Lucianetti, and Tomáš Mocek. Verdet constant of Magneto-Active Materials Developed for High-Power Faraday Devices., Applied Sciences 9, no. 15: 3160, (2019).
DOI: 10.3390/app9153160
Google Scholar
[19]
Neugebauer, Petr. Développement d'un Spectrometre de Résonance Paramagnétique Électronique Haute Fréquence/Haut Champ Hétérodyne fonctionnant autour de 285 GHz., PhD diss., University of St. Andrews, (2010).
Google Scholar
[20]
Su, C. W., S. C. Chang, and Y. C. Chang. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films., AIP Advances 3, no. 7: 072125, (2013).
DOI: 10.1063/1.4816799
Google Scholar
[21]
Zarifi, Abbas. Theoretical Analysis of the Faraday Effect in Carbon Nanotubes with Arbitrary Chirality., ISRN Condensed Matter Physics (2013).
DOI: 10.1155/2013/843702
Google Scholar
[22]
Sato, K., Medvedkin GA, K. Hayata, Y. Hasegawa, T. Nishi, R. Misawa, and T. Ishibashi. Magnetic and magneto-optical properties of a novel ferromagnetic semiconductor CdGeP2: Mn., Journal of the Magnetics Society of Japan 25, no. 3_2: 283-286, (2001).
DOI: 10.3379/jmsjmag.25.283
Google Scholar
[23]
Korenev, V. L., I. V. Kalitukha, I. A. Akimov, V. F. Sapega, E. A. Zhukov, E. Kirstein, O. S. Ken et al. Low voltage control of exchange coupling in a ferromagnet-semiconductor quantum well hybrid structure., Nature communications 10, no. 1: 1-8, (2019).
DOI: 10.1038/s41467-019-10774-0
Google Scholar
[24]
Vojna, David, Ondřej Slezák, Antonio Lucianetti, and Tomáš Mocek. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices., Applied Sciences 9, no. 15: 3160, (2019).
DOI: 10.3390/app9153160
Google Scholar
[25]
Ferreira, Aires, J. Viana-Gomes, Yu V. Bludov, V. Pereira, N. M. R. Peres, and AH Castro Neto. Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids., Physical Review B 84, no. 23: 235410, (2011).
DOI: 10.1103/physrevb.84.235410
Google Scholar
[26]
Korenev, V.L., I.V. Kalitukha, I.A. Akimov, V.F. Sapega, E. A. Zhukov, E. Kirstein, O. S. Ken et al. Low voltage control of exchange coupling in a ferromagnet-semiconductor quantum well hybrid structure., Nature communications 10, no. 1: 1-8, (2019).
DOI: 10.1038/s41467-019-10774-0
Google Scholar
[27]
Zyoud, Samer H., Abdelkader, Atef. Characteristics of Semiconductors Laser under Influence of Magnetic Field, journal of Advanced Research in Dynamical & control Systems, 11, 682-689, (2019).
DOI: 10.5373/jardcs/v11sp10/20192858
Google Scholar
[28]
Zyoud, Samer H., Abdelkader, Atef. The Influence of Magnetic Field on Pulse Distribution of SLD, Universal Journal of Electrical and Electronics Engineering. 6, (2019).
Google Scholar
[29]
Zyoud, Samer H., Abdelkader, Atef. The Impact of Temperature on the Performance of Semiconductor SLD, International Journal of Advanced Science and Technology, Vol. 29 No. 06 (2020).
Google Scholar
[30]
Amrani, Djlali, and P. Paradis. Malus's law of light polarization using a Computer-Based Laboratory., Latin-American Journal of Physics Education 3, no. 2: 6, (2009).
Google Scholar