Silicone for Lithium-Ion Battery Anode Derived from Geothermal Waste Silica through Magnesiothermic Reduction and Double Stages in Acid Leaching

Article Preview

Abstract:

The utilization of geothermal silica as the silica source to synthesize silicone as lithium-ion battery anode component was comprehensively studied. Silicone conversion was performed using magnesiothermic reduction at a temperature of 650 °C for 7 h. The applied Mg:SiO2 mole ratio on magnesiothermic reduction were 1.6:1, 2:1, and 2.5:1. The purification treatments of silicone product were conducted using two stages of acid leaching using HCl and a mixture of HF and acetic acid. In lithium-ion battery anode preparation, the ratio of Si to graphite employed 100:0; 90:10; 50:50; 10:90; and 0:100. The best yield and the conversion of silicone were 26.46% for the yield and 85.60% for the conversion by using 2:1 of Mg:SiO2 ratio. In the purification treatments, silicone yield of 29.45% with silicone purity of 58.9% was achieved using HCl, and silicone yield of 25.97% with silicone purity of 98% was achieved by using mixed solution of HF and acetic acid. The best battery performance in term of specific capacity was found by applying Si:graphite ratio of 100:0 with the value of first cycle of 358.5 mAh/g in this research. These findings present the reliability and feasibility of the geothermal solid waste and acid leaching treatments to generate the high quality of silicone for lithium-ion battery anode component.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-206

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Silviana, R.M. Hasbi, C.P. Sagita, O.D. Nurhayati, A. Fauzan, J.U.D. Hatmoko, Silika alam dari limbah padatan pengeboran geotermal di dieng sebagai silika gel melalui proses ramah lingkungan, Natural silica of solid waste from geothermal drilling in dieng as silica gel through environmentally benign processing, Prodising Seminar Nasional Teknologi Hijau. 2 (2017) 341-346.

Google Scholar

[2] H. Chu, Q. Wu, J. Huang, Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 558 (2018) 495–503.

DOI: 10.1016/j.colsurfa.2018.09.020

Google Scholar

[3] Y. Jiang, Y. Zhang, X. Yan, M. Tian, W. Xiao, H. Tang, A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries, Chemical Engineering Journal. 330 (2017) 1052–1059.

DOI: 10.1016/j.cej.2017.08.061

Google Scholar

[4] S. Silviana, W.J. Bayu, Silicon Conversion from Bamboo Leaf Silica by Magnesiothermic Reduction for Development of Li-ion Baterry Anode, in: MATEC Web of Conferences, EDP Sciences, 156 (2018) 1-4.

DOI: 10.1051/matecconf/201815605021

Google Scholar

[5] S. Silviana, G. Jethro Sanyoto, A. Darmawan, Preparation of geothermal silica glass coating film through multi-factor optimization, Jurnal Teknologi. 83 (2021) 41–49.

DOI: 10.11113/jurnalteknologi.v83.16377

Google Scholar

[6] S. Silviana, G.J. Sanyoto, A. Darmawan, H. Sutanto, Geothermal silica waste as sustainable amorphous silica source for the synthesis of silica xerogels, Rasayan Journal of Chemistry. 13 (2020) 1692–1700.

DOI: 10.31788/rjc.2020.1335701

Google Scholar

[7] S. Silviana, A. Darmawan, F. Dalanta, A. Subagio, F. Hermawan, H.M. Santoso, Superhydrophobic coating derived from geothermal silica to enhance material durability of bamboo using hexadimethylsilazane (HMDS) and trimethylchlorosilane (TMCS), Materials. 14 (2021) 1–20.

DOI: 10.3390/ma14030530

Google Scholar

[8] S. Silviana, A. Darmawan, A. Subagio, F. Dalanta, Statistical approaching for superhydrophobic coating preparation using silica derived from geothermal solid waste, ASEAN Journal of Chemical Engineering. 19 (2019) 91–99.

DOI: 10.22146/ajche.51178

Google Scholar

[9] A. Purnomo, F. Dalanta, A.D. Oktaviani, S. Silviana, Superhydrophobic coatings and self-cleaning through the use of geothermal scaling silica in improvement of material resistance, in: AIP Conference Proceedings, American Institute of Physics Inc., 2026 (2018) 020077.

DOI: 10.1063/1.5065037

Google Scholar

[10] S. Silviana, F. Dalanta, G.J. Sanyoto, Utilization of bamboo leaf silica as a superhydrophobic coating using trimethylchlorosilane as a surface modification agent, in: Journal of Physics: Conference Series, IOP Publishing Ltd, 1943 (2021) 012180.

DOI: 10.1088/1742-6596/1943/1/012180

Google Scholar

[11] S. Silviana, B. Jos, H. Santosaa, S. Sumardiono, Statistical Approach for Water Glass Precursor Preparation from Bamboo Leaf Silica, Jurnal Kimia Sains Dan Aplikasi. 22 (2019) 52–57.

DOI: 10.14710/jksa.22.2.52-57

Google Scholar

[12] S. Silviana, I.N.H. Rambe, H. Sudrajat, M.A. Zidan, Statistical approaching of sol-gel process in preparation of silica aerogel derived from geothermal silica by several acids, in: AIP Conference Proceedings, American Institute of Physics Inc., 2022 (2019) 020069.

DOI: 10.1063/1.5141682

Google Scholar

[13] M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patrício, L. Durães, Application of hydrophobic silica-based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions, Journal of Colloid and Interface Science. 380 (2012) 134–140.

DOI: 10.1016/j.jcis.2012.04.062

Google Scholar

[14] S. Silviana, D.D. Anggoro, C.A. Salsabila, K. Aprilio, Utilization of geothermal waste as a silica adsorbent for biodiesel purification, Korean Journal of Chemical Engineering. 38(10) (2021) 2091-2105.

DOI: 10.1007/s11814-021-0827-z

Google Scholar

[15] J.A. Lee, M.K. Kim, J.H. Song, M.R. Jo, J. Yu, K.M. Kim, Y.R. Kim, J.M. Oh, S.J. Choi, Biokinetics of food additive silica nanoparticles and their interactions with food components, Colloids and Surfaces B: Biointerfaces. 150 (2017) 384–392.

DOI: 10.1016/j.colsurfb.2016.11.001

Google Scholar

[16] S. Silviana, A. Darmawan, A.A. Janitra, A. Ma'ruf, I. Triesty, Synthesized silica mesoporous from silica geothermal assisted with CTAB and modified by APTMS, International Journal of Emerging Trends in Engineering Research. 8 (2020) 4854–4860.

DOI: 10.30534/ijeter/2020/125882020

Google Scholar

[17] S. Silviana, E.A.P.P. Sagala, S.E. Sari, C.T.M. Siagian, Preparation of mesoporous silica derived from geothermal silica as precursor with a surfactant of cethyltrimethylammonium bromide, in: AIP Conference Proceedings, American Institute of Physics Inc., 2022 (2019) 020070.

DOI: 10.1063/1.5141683

Google Scholar

[18] S. Silviana, A. Purbasari, A. Siregar, A.F. Rochyati, T. Papra, Synthesis of mesoporous silica derived from geothermal waste with cetyl trimethyl ammonium bromide (CTAB) surfactant as drug delivery carrier, in: AIP Conference Proceedings, American Institute of Physics Inc., 2296 (2020) 020083.

DOI: 10.1063/5.0030487

Google Scholar

[19] M. Frías, H. Savastano, E. Villar, M.I. Sánchez De Rojas, S. Santos, Characterization and properties of blended cement matrices containing activated bamboo leaf wastes, Cement and Concrete Composites. 34 (2012) 1019–1023.

DOI: 10.1016/j.cemconcomp.2012.05.005

Google Scholar

[20] S. Silviana, A. Noorpasha, M.M. Rahman, Preliminary study of chitosan coating silica derived from geotermal solid waste, Civil Engineering and Architecture. 8 (2020) 281–288.

DOI: 10.13189/cea.2020.080311

Google Scholar

[21] H. Setyawan, M. Yuwana, R. Balgis, PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems, Microporous and Mesoporous Materials. 218 (2015) 95–100.

DOI: 10.1016/j.micromeso.2015.07.009

Google Scholar

[22] N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries, Energy and Environmental Science. 8 (2015) 3187–3191.

DOI: 10.1039/c5ee02487k

Google Scholar

[23] M. Barati, S. Sarder, A. McLean, R. Roy, Recovery of silicon from silica fume, Journal of Non-Crystalline Solids. 357 (2011) 18–23.

DOI: 10.1016/j.jnoncrysol.2010.09.079

Google Scholar

[24] T.D. Hatchard, J.R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon, Journal of The Electrochemical Society. 151 (2004) A838.

DOI: 10.1149/1.1739217

Google Scholar

[25] N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Scientific Reports. 3 (2013).

DOI: 10.1038/srep01919

Google Scholar

[26] J. Wang, S. Li, Y. Zhao, J. Shi, L. Lv, H. Wang, Z. Zhang, W. Feng, The influence of different Si:C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries, RSC Advances. 8 (2018) 6660–6666.

DOI: 10.1039/c7ra12027c

Google Scholar

[27] M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, M. Fabretto, Pure silicon thin-film anodes for lithium-ion batteries: A review, Journal of Power Sources. 414 (2019) 48–67.

DOI: 10.1016/j.jpowsour.2018.12.068

Google Scholar

[28] R. Wagner, N. Preschitschek, S. Passerini, J. Leker, M. Winter, Current research trends and prospects among the various materials and designs used in lithium-based batteries, Journal of Applied Electrochemistry. 43 (2013) 481–496.

DOI: 10.1007/s10800-013-0533-6

Google Scholar

[29] K.W. Kow, R. Yusoff, A.R.A. Aziz, E.C. Abdullah, Physicochemical properties of bamboo leaf aerogels synthesized via different modes of gelation, in: Applied Surface Science, Elsevier B.V., 2014: p.161–172.

DOI: 10.1016/j.apsusc.2014.02.031

Google Scholar

[30] Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy, C.J. Summers, M. Liu, K.H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature. 446 (2007) 172–175.

DOI: 10.1038/nature05570

Google Scholar

[31] S.E. Sadique, Production and Purification of Silicon by Magnesiothermic Reduction of Silica Fume, n.d.

Google Scholar

[32] S. Anas Boussaa, A. Kheloufi, N. Boutarek Zaourar, S. Bouachma, Iron and aluminium removal from Algerian silica sand by acid leaching, in: Acta Physica Polonica A, Polish Academy of Sciences, 2017: p.1082–1086.

DOI: 10.12693/aphyspola.132.1082

Google Scholar

[33] I.B. Ugheoke, O. Mamat, A critical assessment and new research directions of rice husk silica processing methods and properties, Maejo Int. J. Sci. Technol. 2012 (n.d.) 430–448. www.mijst.mju.ac.th.

Google Scholar

[34] K.K. Larbi, M. Barati, A. McLean, Reduction behaviour of rice husk ash for preparation of high purity silicon, Canadian Metallurgical Quarterly. 50 (2011) 341–349.

DOI: 10.1179/000844311x13117643274677

Google Scholar

[35] S. Silviana, A. Ma'ruf, Silicon preparation derived from geothermal silica by reduction using magnesium, International Journal of Emerging Trends in Engineering Research. 8 (2020) 4861–4866.

DOI: 10.30534/ijeter/2020/126882020

Google Scholar

[36] Z. Chen, C. Dai, G. Wu, M. Nelson, X. Hu, R. Zhang, J. Liu, J. Xia, High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test, Electrochimica Acta. 55 (2010) 8595–8599.

DOI: 10.1016/j.electacta.2010.07.068

Google Scholar

[37] H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Advanced Energy Materials. 1 (2011) 1036–1039.

DOI: 10.1002/aenm.201100485

Google Scholar

[38] J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond, Journal of Materials Chemistry A. 6 (2018) 18344–18356.

DOI: 10.1039/c8ta06370b

Google Scholar

[39] J. Zhang, S. Zuo, Y. Wang, H. Yin, Z. Wang, J. Wang, Scalable synthesis of interconnected hollow Si/C nanospheres enabled by carbon dioxide in magnesiothermic reduction for high-performance lithium energy storage, Journal of Power Sources. 495 (2021).

DOI: 10.1016/j.jpowsour.2021.229803

Google Scholar

[40] Z. Yang, Y. Du, G. Hou, Y. Ouyang, F. Ding, F. Yuan, Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries, Electrochimica Acta. 329 (2020).

DOI: 10.1016/j.electacta.2019.135141

Google Scholar

[41] X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray, Black silicon: Fabrication methods, properties and solar energy applications, Energy and Environmental Science. 7 (2014) 3223–3263.

DOI: 10.1039/c4ee01152j

Google Scholar

[42] H. Lu, K. Wei, W. Ma, K. Xie, J. Wu, Y. Lei, Y. Dai, Effect of acetic acid on the leaching behavior of impurities in metallurgical grade silicon, Separation Science and Technology (Philadelphia). 52 (2017) 1257–1264.

DOI: 10.1080/01496395.2017.1282964

Google Scholar

[43] S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C. Campbell, D.L. Kwong, Photoluminescence and formation mechanism of chemically etched silicon, Applied Physics Letters. 60 (1992) 1863–1865.

DOI: 10.1063/1.107162

Google Scholar

[44] A.S. Borschkevski, I.I. Burdiyan, E. Yu Luben-skaya, E. v Sokolova Russ, M. Wright Jenkins, 6. M. B. Panish and M. Ilegems, in "Progress in Solid-State Chemistry, Plenum, (1958).

Google Scholar

[45] L. Yang, Y. Li, Y. Wang, Q. Li, Y. Chen, B. Zhong, X. Guo, Z. Wu, Y. Liu, G. Wang, Y. Song, W. Xiang, Y. Zhong, Nitrogen-doped sheet VO2 modified separator to enhanced long-cycle performance lithium-sulfur battery, Journal of Power Sources. 501 (2021).

DOI: 10.1016/j.jpowsour.2021.230040

Google Scholar

[46] H. Lim, H. Kim, S.O. Kim, K.J. Kim, W. Choi, Novel approach for controlling free-carbon domain in silicone oil-derived silicon oxycarbide (SiOC) as an anode material in secondary batteries, Chemical Engineering Journal. 404 (2021).

DOI: 10.1016/j.cej.2020.126581

Google Scholar

[47] C.H. Zheng, G.P. Zhang, S.S. Wang, A.Q. Mao, D.L. Fang, Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction, Journal of Alloys and Compounds. 875 (2021).

DOI: 10.1016/j.jallcom.2021.159974

Google Scholar