[1]
K. Badeker, Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds, Annalen der Physik, 22 (1997) 749.
Google Scholar
[2]
T. Minami, Transparent Conductive Oxides for Transparent Electrode Applications, Semiconductors and Semimetals, 88 (2013) 159–200.
DOI: 10.1016/b978-0-12-396489-2.00005-9
Google Scholar
[3]
B. G. Lewis and D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bulletin, vol. 25 (2000).
Google Scholar
[4]
D. S. Ginley and C. Bright, Transparent Conducting Oxides, MRS Bulletin, 25 (2000) 15–18.
DOI: 10.1557/mrs2000.256
Google Scholar
[5]
B. G. Lewis and D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bull.,25 (2000) 22–27.
DOI: 10.1557/mrs2000.147
Google Scholar
[6]
R. Gordon, Criteria for Choosing Transparent Conductors, (2000).
Google Scholar
[7]
T. Minami, New n-Type Transparent Conducting Oxides,MRS Bulletin, 25 (2000).
Google Scholar
[8]
G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, and D. Bellet, Electron scattering mechanisms in fluorine-doped SnO2 thin films, Journal of Applied Physics, 114 (2013).
DOI: 10.1063/1.4829672
Google Scholar
[9]
T. Minami, .Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., 20 (2000)35–44.
DOI: 10.1088/0268-1242/20/4/004
Google Scholar
[10]
E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 93 (1954) 632–633.
DOI: 10.1103/physrev.93.632
Google Scholar
[11]
D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, and T. Wada, Thin films for photovoltaic and related device applications.
Google Scholar
[12]
V. K. Jain and A. P. Kulshreshtha, Indium-Tin-Oxide transparent conducting coatings on silicon solar cells and their figure of merit,, Solar Energy Materials, 4 (1981) 151–158.
DOI: 10.1016/0165-1633(81)90038-1
Google Scholar
[13]
M. Nisha, S. Anusha, A. Antony, R. Manoj, and M. K. Jayaraj, Effect of substrate temperature on the growth of ITO thin films, Applied Surface Science, 252 (2005) 1430–1435.
DOI: 10.1016/j.apsusc.2005.02.115
Google Scholar
[14]
B. Dugrenil et al., AZO electrodes deposited by atomic layer deposition for OLED fabrication, in Organic Photonics VI, 9137 (2014) 127–132.
Google Scholar
[15]
B. Sarma, D. Barman, and B. K. Sarma, AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide, Applied Surface Science, 479 (2019) 786–795.
DOI: 10.1016/j.apsusc.2019.02.146
Google Scholar
[16]
B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, and M. S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications, Superlattices and Microstructures, 83 (2015) 78–88.
DOI: 10.1016/j.spmi.2015.03.017
Google Scholar
[17]
Information on https://courses.lumenlearning.com/geology/chapter/reading-abundance-of-elements-in-earths-crust.
Google Scholar
[18]
D. R. Lide, G. Baysinger, S. Chemistry, L. I. Berger, R. N. Goldberg, and H. V. Kehiaian, CRC Handbook of Chemistry and Physics, 2661.
Google Scholar
[19]
Information on https://environmentalchemistry.com/yogi/periodic/ionicradius.html.
Google Scholar
[20]
M. Asemi, M. Ahmadi, and M. Ghanaatshoar, Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications, Ceramics International, 44 (2018) 12862–12868.
DOI: 10.1016/j.ceramint.2018.04.096
Google Scholar
[21]
E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceramics International, 42 (2016) 10066–10070.
DOI: 10.1016/j.ceramint.2016.03.110
Google Scholar
[22]
R. K. Chava and M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping, Journal of Alloys and Compounds, 692 (2017) 67–76.
DOI: 10.1016/j.jallcom.2016.09.029
Google Scholar
[23]
N. Zhou, Q. Cheng, L. Li, and H. Zhou, Doping effects in SnO2 transport material for high performance planar perovskite solar cells, J. Phys. D: Appl. Phys., 51 (2018) 394001.
DOI: 10.1088/1361-6463/aad685
Google Scholar
[24]
S. S. Roy and J. Podder, Synthesis and optical characterization of pure and Cu doped SnO2 thin films deposited by spray pyrolysis, 7.
Google Scholar
[25]
J. Kaur, J. Shah, R. K. Kotnala, and K. C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles, Ceramics International, 38 (2012) 5563–5570.
DOI: 10.1016/j.ceramint.2012.03.075
Google Scholar
[26]
E. Halvani Anaraki et al., Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells, ACS Energy Lett., 3 (2018) 773–778.
DOI: 10.1021/acsenergylett.8b00055.s001
Google Scholar
[27]
H. Sato, T. Minami, S. Takata, and T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films, 236 (1993) 27–31.
DOI: 10.1016/0040-6090(93)90636-4
Google Scholar
[28]
H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions, MRS Bulletin, 25 (2000) 28–36.
DOI: 10.1557/mrs2000.148
Google Scholar
[29]
H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature, 389 (1997) 939–942.
DOI: 10.1038/40087
Google Scholar
[30]
T. David, S. Goldsmith, and R. L. Boxman, Electro-optical and structural properties of thin ZnO films, prepared by filtered vacuum arc deposition, Thin Solid Films, 447–448 (2004) 61–67.
DOI: 10.1016/j.tsf.2003.09.023
Google Scholar
[31]
J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films, Thin Solid Films, 516 (2008) 3893–3898.
DOI: 10.1016/j.tsf.2007.07.156
Google Scholar
[32]
T. Sahoo et al., Hydrothermal growth and characterization of ZnO thin film on sapphire (0001) substrate with p-GaN buffer layer, Thin Solid Films, 516 (2008) 8244–8247.
DOI: 10.1016/j.tsf.2008.03.001
Google Scholar
[33]
L. Znaidi, Sol–gel-deposited ZnO thin films: A review, Materials Science & Engineering B, 1–3 (2010) 18–30.
DOI: 10.1016/j.mseb.2010.07.001
Google Scholar
[34]
S. Takayanagi, T. Yanagitani, and M. Matsukawa, Effect of metal mode and oxide mode on unusual c-axis parallel oriented ZnO film growth on Al/glass substrate in a reactive magnetron sputtering of Zn target, Journal of Crystal Growth, 363 (2013) 22–24.
DOI: 10.1016/j.jcrysgro.2012.09.016
Google Scholar
[35]
W. Gao and Z. Li, ZnO thin films produced by magnetron sputtering, (2004).
Google Scholar
[36]
S.-M. Park, T. Ikegami, K. Ebihara, and P.-K. Shin, Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Applied Surface Science, 253 (2006) 1522–1527.
DOI: 10.1016/j.apsusc.2006.02.046
Google Scholar
[37]
Information on https://www.semanticscholar.org/paper/Basics-of-Molecular-Beam-Epitaxy-(-MBE-)-Rinaldi/c4b463caba1e85265210a62b5cb42b8dba4ce0fd.
Google Scholar
[38]
M. Quaas, H. Steffen, R. Hippler, and H. Wulff, Investigation of diffusion and crystallization processes in thin ITO films by temperature and time resolved grazing incidence X-ray diffractometry, Surface Science, 540 (2003) 337–342.
DOI: 10.1016/s0039-6028(03)00850-1
Google Scholar
[39]
V. Teixeira, H. N. Cui, L. J. Meng, E. Fortunato, and R. Martins, Amorphous ITO thin films prepared by DC sputtering for electrochromic applications, Thin Solid Films, 420–421 (2002) 70–75.
DOI: 10.1016/s0040-6090(02)00656-9
Google Scholar
[40]
F. Kurdesau, G. Khripunov, A. F. da Cunha, M. Kaelin, and A. N. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature, Journal of Non-Crystalline Solids, 352 (2006) 1466–1470.
DOI: 10.1016/j.jnoncrysol.2005.11.088
Google Scholar
[41]
Y. S. Jung and S. S. Lee, Development of indium tin oxide film texture during DC magnetron sputtering deposition, Journal of Crystal Growth, 259 (2003) 343–351.
DOI: 10.1016/j.jcrysgro.2003.07.006
Google Scholar
[42]
W. Liu and S. Cheng, Photoelectric properties of ITO thin films deposited by DC magnetron sputtering, J. Semicond., 32 (2011).
DOI: 10.1088/1674-4926/32/1/013002
Google Scholar
[43]
C. Chityuttakan, P. Chinvetkitvanich, S. Chatraphorn, and S. Chatraphorn, Influence of deposition parameters on the quality of ITO films for photovoltaic application, AIP Conf. Proc, 2091 (2019) 3.
Google Scholar
[44]
A. S. A. C. Diniz, The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications, Renewable Energy, 36 (2011) 1153–1165.
DOI: 10.1016/j.renene.2010.09.005
Google Scholar
[45]
I. A. Rauf and M. G. Walls, A comparative study of microstructure (in ITO films) and techniques (CTEM and STM), Ultramicroscopy, 35 (1991).
DOI: 10.1016/0304-3991(91)90040-d
Google Scholar
[46]
A. S. A. C. Diniz, C. J. Kiely, I. Elfalla, R. D. Pilkington, and A. E. Hill, The effects of post-deposition annealing on the microstructure of electron-beam evaporated indium tin oxide thin films, Renewable Energy, 5, (1994).
DOI: 10.1016/0960-1481(94)90373-5
Google Scholar
[47]
N. M. Ahmed, F. A. Sabah, H. I. Abdulgafour, A. Alsadig, A. Sulieman, and M. Alkhoaryef, The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement, Results 13 (2019)102159.
DOI: 10.1016/j.rinp.2019.102159
Google Scholar
[48]
I. Hamberg and C. G. Granqvist, Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows, Journal of Applied Physics, 60, 123–R160.
DOI: 10.1063/1.337534
Google Scholar
[49]
L. Zhao, Z. Zhou, H. Peng, and R. Cui, Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application, Applied Surface Science, 252 (2005) 385–392.
DOI: 10.1016/j.apsusc.2005.01.033
Google Scholar
[50]
A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Physical properties of ZnO thin films deposited by spray pyrolysis technique, Applied Surface Science, 252 (2006) 7844–7848.
DOI: 10.1016/j.apsusc.2005.09.048
Google Scholar
[51]
T. Prasada Rao and M. C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis, Applied Surface Science, 255 (2009) 4579-4584.
DOI: 10.1016/j.apsusc.2008.11.079
Google Scholar