Transparent Conductive Oxides. Part I. General Review of Structural, Electrical and Optical Properties of TCOs Related to the Growth Techniques, Materials and Dopants

Article Preview

Abstract:

This contribution, based on literature review, presents a general overview of properties and applications of transparent conductive oxides, TCO. The requested properties of TCO are a high conductivity associated to high transparency in a wide wavelength range. The relation between the techniques used for deposition or growing TCO and the possibility of their doping with appropriate dopant and concentration were discussed relatively to their applications and properties. Thus, we present in this part, the various possible techniques for growing TCO and discuss the effect of the temperature on the functional properties. This self-consistent presentation is also considered to introduce a better understanding of the expected requirements for TCO integrated as transparent electrodes in photovoltaic cells and modules. These developments of TCO for photovoltaic applications will be presented in a second publication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-256

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Badeker, Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds, Annalen der Physik, 22 (1997) 749.

Google Scholar

[2] T. Minami, Transparent Conductive Oxides for Transparent Electrode Applications, Semiconductors and Semimetals, 88 (2013) 159–200.

DOI: 10.1016/b978-0-12-396489-2.00005-9

Google Scholar

[3] B. G. Lewis and D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bulletin, vol. 25 (2000).

Google Scholar

[4] D. S. Ginley and C. Bright, Transparent Conducting Oxides, MRS Bulletin, 25 (2000) 15–18.

DOI: 10.1557/mrs2000.256

Google Scholar

[5] B. G. Lewis and D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bull.,25 (2000) 22–27.

DOI: 10.1557/mrs2000.147

Google Scholar

[6] R. Gordon, Criteria for Choosing Transparent Conductors, (2000).

Google Scholar

[7] T. Minami, New n-Type Transparent Conducting Oxides,MRS Bulletin, 25 (2000).

Google Scholar

[8] G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, and D. Bellet, Electron scattering mechanisms in fluorine-doped SnO2 thin films, Journal of Applied Physics, 114 (2013).

DOI: 10.1063/1.4829672

Google Scholar

[9] T. Minami, .Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., 20 (2000)35–44.

DOI: 10.1088/0268-1242/20/4/004

Google Scholar

[10] E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 93 (1954) 632–633.

DOI: 10.1103/physrev.93.632

Google Scholar

[11] D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, and T. Wada, Thin films for photovoltaic and related device applications.

Google Scholar

[12] V. K. Jain and A. P. Kulshreshtha, Indium-Tin-Oxide transparent conducting coatings on silicon solar cells and their figure of merit,, Solar Energy Materials, 4 (1981) 151–158.

DOI: 10.1016/0165-1633(81)90038-1

Google Scholar

[13] M. Nisha, S. Anusha, A. Antony, R. Manoj, and M. K. Jayaraj, Effect of substrate temperature on the growth of ITO thin films, Applied Surface Science, 252 (2005) 1430–1435.

DOI: 10.1016/j.apsusc.2005.02.115

Google Scholar

[14] B. Dugrenil et al., AZO electrodes deposited by atomic layer deposition for OLED fabrication, in Organic Photonics VI, 9137 (2014) 127–132.

Google Scholar

[15] B. Sarma, D. Barman, and B. K. Sarma, AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide, Applied Surface Science, 479 (2019) 786–795.

DOI: 10.1016/j.apsusc.2019.02.146

Google Scholar

[16] B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, and M. S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications, Superlattices and Microstructures, 83 (2015) 78–88.

DOI: 10.1016/j.spmi.2015.03.017

Google Scholar

[17] Information on https://courses.lumenlearning.com/geology/chapter/reading-abundance-of-elements-in-earths-crust.

Google Scholar

[18] D. R. Lide, G. Baysinger, S. Chemistry, L. I. Berger, R. N. Goldberg, and H. V. Kehiaian, CRC Handbook of Chemistry and Physics, 2661.

Google Scholar

[19] Information on https://environmentalchemistry.com/yogi/periodic/ionicradius.html.

Google Scholar

[20] M. Asemi, M. Ahmadi, and M. Ghanaatshoar, Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications, Ceramics International, 44 (2018) 12862–12868.

DOI: 10.1016/j.ceramint.2018.04.096

Google Scholar

[21] E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceramics International, 42 (2016) 10066–10070.

DOI: 10.1016/j.ceramint.2016.03.110

Google Scholar

[22] R. K. Chava and M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping, Journal of Alloys and Compounds, 692 (2017) 67–76.

DOI: 10.1016/j.jallcom.2016.09.029

Google Scholar

[23] N. Zhou, Q. Cheng, L. Li, and H. Zhou, Doping effects in SnO2 transport material for high performance planar perovskite solar cells, J. Phys. D: Appl. Phys., 51 (2018) 394001.

DOI: 10.1088/1361-6463/aad685

Google Scholar

[24] S. S. Roy and J. Podder, Synthesis and optical characterization of pure and Cu doped SnO2 thin films deposited by spray pyrolysis, 7.

Google Scholar

[25] J. Kaur, J. Shah, R. K. Kotnala, and K. C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles, Ceramics International, 38 (2012) 5563–5570.

DOI: 10.1016/j.ceramint.2012.03.075

Google Scholar

[26] E. Halvani Anaraki et al., Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells, ACS Energy Lett., 3 (2018) 773–778.

DOI: 10.1021/acsenergylett.8b00055.s001

Google Scholar

[27] H. Sato, T. Minami, S. Takata, and T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films, 236 (1993) 27–31.

DOI: 10.1016/0040-6090(93)90636-4

Google Scholar

[28] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions, MRS Bulletin, 25 (2000) 28–36.

DOI: 10.1557/mrs2000.148

Google Scholar

[29] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature, 389 (1997) 939–942.

DOI: 10.1038/40087

Google Scholar

[30] T. David, S. Goldsmith, and R. L. Boxman, Electro-optical and structural properties of thin ZnO films, prepared by filtered vacuum arc deposition, Thin Solid Films, 447–448 (2004) 61–67.

DOI: 10.1016/j.tsf.2003.09.023

Google Scholar

[31] J. S. Wellings, N. B. Chaure, S. N. Heavens, and I. M. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films, Thin Solid Films, 516 (2008) 3893–3898.

DOI: 10.1016/j.tsf.2007.07.156

Google Scholar

[32] T. Sahoo et al., Hydrothermal growth and characterization of ZnO thin film on sapphire (0001) substrate with p-GaN buffer layer, Thin Solid Films, 516 (2008) 8244–8247.

DOI: 10.1016/j.tsf.2008.03.001

Google Scholar

[33] L. Znaidi, Sol–gel-deposited ZnO thin films: A review, Materials Science & Engineering B, 1–3 (2010) 18–30.

DOI: 10.1016/j.mseb.2010.07.001

Google Scholar

[34] S. Takayanagi, T. Yanagitani, and M. Matsukawa, Effect of metal mode and oxide mode on unusual c-axis parallel oriented ZnO film growth on Al/glass substrate in a reactive magnetron sputtering of Zn target, Journal of Crystal Growth, 363 (2013) 22–24.

DOI: 10.1016/j.jcrysgro.2012.09.016

Google Scholar

[35] W. Gao and Z. Li, ZnO thin films produced by magnetron sputtering, (2004).

Google Scholar

[36] S.-M. Park, T. Ikegami, K. Ebihara, and P.-K. Shin, Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Applied Surface Science, 253 (2006) 1522–1527.

DOI: 10.1016/j.apsusc.2006.02.046

Google Scholar

[37] Information on https://www.semanticscholar.org/paper/Basics-of-Molecular-Beam-Epitaxy-(-MBE-)-Rinaldi/c4b463caba1e85265210a62b5cb42b8dba4ce0fd.

Google Scholar

[38] M. Quaas, H. Steffen, R. Hippler, and H. Wulff, Investigation of diffusion and crystallization processes in thin ITO films by temperature and time resolved grazing incidence X-ray diffractometry, Surface Science, 540 (2003) 337–342.

DOI: 10.1016/s0039-6028(03)00850-1

Google Scholar

[39] V. Teixeira, H. N. Cui, L. J. Meng, E. Fortunato, and R. Martins, Amorphous ITO thin films prepared by DC sputtering for electrochromic applications, Thin Solid Films, 420–421 (2002) 70–75.

DOI: 10.1016/s0040-6090(02)00656-9

Google Scholar

[40] F. Kurdesau, G. Khripunov, A. F. da Cunha, M. Kaelin, and A. N. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature, Journal of Non-Crystalline Solids, 352 (2006) 1466–1470.

DOI: 10.1016/j.jnoncrysol.2005.11.088

Google Scholar

[41] Y. S. Jung and S. S. Lee, Development of indium tin oxide film texture during DC magnetron sputtering deposition, Journal of Crystal Growth, 259 (2003) 343–351.

DOI: 10.1016/j.jcrysgro.2003.07.006

Google Scholar

[42] W. Liu and S. Cheng, Photoelectric properties of ITO thin films deposited by DC magnetron sputtering, J. Semicond., 32 (2011).

DOI: 10.1088/1674-4926/32/1/013002

Google Scholar

[43] C. Chityuttakan, P. Chinvetkitvanich, S. Chatraphorn, and S. Chatraphorn, Influence of deposition parameters on the quality of ITO films for photovoltaic application, AIP Conf. Proc, 2091 (2019) 3.

Google Scholar

[44] A. S. A. C. Diniz, The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications, Renewable Energy, 36 (2011) 1153–1165.

DOI: 10.1016/j.renene.2010.09.005

Google Scholar

[45] I. A. Rauf and M. G. Walls, A comparative study of microstructure (in ITO films) and techniques (CTEM and STM), Ultramicroscopy, 35 (1991).

DOI: 10.1016/0304-3991(91)90040-d

Google Scholar

[46] A. S. A. C. Diniz, C. J. Kiely, I. Elfalla, R. D. Pilkington, and A. E. Hill, The effects of post-deposition annealing on the microstructure of electron-beam evaporated indium tin oxide thin films, Renewable Energy, 5, (1994).

DOI: 10.1016/0960-1481(94)90373-5

Google Scholar

[47] N. M. Ahmed, F. A. Sabah, H. I. Abdulgafour, A. Alsadig, A. Sulieman, and M. Alkhoaryef, The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement, Results 13 (2019)102159.

DOI: 10.1016/j.rinp.2019.102159

Google Scholar

[48] I. Hamberg and C. G. Granqvist, Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows, Journal of Applied Physics, 60, 123–R160.

DOI: 10.1063/1.337534

Google Scholar

[49] L. Zhao, Z. Zhou, H. Peng, and R. Cui, Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application, Applied Surface Science, 252 (2005) 385–392.

DOI: 10.1016/j.apsusc.2005.01.033

Google Scholar

[50] A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Physical properties of ZnO thin films deposited by spray pyrolysis technique, Applied Surface Science, 252 (2006) 7844–7848.

DOI: 10.1016/j.apsusc.2005.09.048

Google Scholar

[51] T. Prasada Rao and M. C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis, Applied Surface Science, 255 (2009) 4579-4584.

DOI: 10.1016/j.apsusc.2008.11.079

Google Scholar