Effect of Synthesis Temperature on Structural and Magnetic Properties in Hematite (α-Fe2O3) Nanoparticles Produced by Co-Precipitation Method

Article Preview

Abstract:

Modification of nanometer size order in anode material of hematite nanoparticles is believed to be one of the keys to increasing the specific capacity of Li-ion batteries application. So that, the synthesis temperature dependence of nanocrystallite size properties in co-precipitated hematite nanoparticles is studied. Sample of Hematite nanoparticles is modified the physical properties by synthesis temperature and then annealed of 700°C for 4 hours. The crystallite size increase with the increase of the synthesis temperature i.e., 23.06 to 29.64 nm. It is indicated that the synthesis temperature affects crystallite formation. Furthermore, the magnetic properties show that the coercive field decrease from 869 to 211 Oe with the increase of the temperature synthesis. It is related to the change in the nanosize-order of the sample crystallite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-225

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fang, S., Bresser, D. Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium and sodium ion batteries, Adv. Energy Mater. 10 (1) (2020) 1902485.

DOI: 10.1002/aenm.201902485

Google Scholar

[2] Yao, X., Tang, C., Yuan, G., Cui, P., Xu, X., & Liu, Z. (2011). Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochemistry Communications, 13(12), 1439–1442.

DOI: 10.1016/j.elecom.2011.09.015

Google Scholar

[3] Balogun, M.-S., Wu, Z., Luo, Y., Qiu, W., Fan, X., Long, B., … Tong, Y. (2016). High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 308, 7–17.

DOI: 10.1016/j.jpowsour.2016.01.043

Google Scholar

[4] Yang, S., Zhou, B., Ding, Z., Zheng, H., Huang, L., Pan, J., … Zhang, H. (2015). Tetragonal hematite single crystals as anode materials for high performance lithium ion batteries. Journal of Power Sources, 286, 124–129.

DOI: 10.1016/j.jpowsour.2015.03.151

Google Scholar

[5] Wu, K., Liu, D., Lu, W., & Zhang, K. (2018). One-pot sonochemical synthesis of magnetite@reduced graphene oxide nanocomposite for high performance Li ion storage. Ultrasonics Sonochemistry, 45, 167–172.

DOI: 10.1016/j.ultsonch.2018.03.015

Google Scholar

[6] Wang, L., Liang, K., Wang, G., & Yang, Y. (2018). Interface-engineered hematite nanocones as binder-free electrodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 6(28), 13968–13974.

DOI: 10.1039/c8ta03106a

Google Scholar

[7] Balasingam, S. K., Kundu, M., Balakrishnan, B., Kim, H.-J., Svensson, A. M., & Jayasayee, K. (2019). Hematite microdisks as an alternative anode material for lithium-ion batteries. Materials Letters, 247, 163–166.

DOI: 10.1016/j.matlet.2019.03.058

Google Scholar

[8] Huang, W., Chen, K., Komarneni, S., Xue, D., Katsuki, H., Cho, W.-S., … Ma, J. (2021). Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteries and pseudocapacitors: Electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126232.

DOI: 10.1016/j.colsurfa.2021.126232

Google Scholar

[9] Malaidurai, M., & Thangavel, R., 2018, Study of structural and magnetic properties of co-precipitated α-Fe2O3 nanocrystals. Superlattices and Microstructures, 120, 553-560.

DOI: 10.1016/j.spmi.2018.06.025

Google Scholar

[10] Nassar, M. Y., Ahmed, I. S., & Hendy, H. S., 2018, A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Molec. Liq., 271, 844-856.

DOI: 10.1016/j.molliq.2018.09.057

Google Scholar

[11] Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., & Panjan, M., 2019, Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. All. Comp., 792, 599-609.

DOI: 10.1016/j.jallcom.2019.03.414

Google Scholar

[12] Paulson, E., & Jothibas, M., 2021, Significance of Thermal Interfacing in Hematite (α-Fe2O3) Nanoparticles Synthesized by Sol-Gel Method and its Characteristics Properties. Surfaces and Interfaces, 26, 101432.

DOI: 10.1016/j.surfin.2021.101432

Google Scholar

[13] Rincón J. M., Barba Ortega, J., Malafatti, J. O. D., & Paris, E. C., 2019, Evaluation of photocatalytic activity in water pollutants and cytotoxic response of α-Fe2O3 nanoparticles. ACS omega, 4(17), 17477-17486.

DOI: 10.1021/acsomega.9b02251

Google Scholar

[14] Fouad, D. E., Zhang, C., Mekuria, T. D., Bi, C., Zaidi, A. A., & Shah, A. H. (2019). Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: A comparative study. Ultrasonics sonochemistry, 59, 104713.

DOI: 10.1016/j.ultsonch.2019.104713

Google Scholar

[15] Fouad, D. E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T. D., & Shah, A. H., 2019, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results in Physics, 12, 1253-1261.

DOI: 10.1016/j.rinp.2019.01.005

Google Scholar

[16] Stanhaus, C., Alves, L. L., Ferrari, J. L., Padilha, J. C., & Goes, M. S., 2020, Hematite (α-Fe2O3) pure and doped with Eu3+ obtained by high-energy ball milling process. Mater. Chem. Phys., 254, 123385.

DOI: 10.1016/j.matchemphys.2020.123385

Google Scholar

[17] Lassoued, A., Lassoued, M. S., Dkhil, B., Gadri, A., & Ammar, S., 2017, Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base. J. Molec. Struc., 1141, 99-106.

DOI: 10.1016/j.molstruc.2017.03.077

Google Scholar

[18] Umar, A., Ibrahim, A. A., Kumar, R., Albargi, H., Alsaiari, M. A., & Ahmed, F., 2021, Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sensors and Actuators B: Chemical, 326, 128851.

DOI: 10.1016/j.snb.2020.128851

Google Scholar

[19] Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., & Gadri, A., 2018, Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physica E: Low-dimensional Systems and Nanostructures, 101, 212-219.

DOI: 10.1016/j.physe.2018.04.009

Google Scholar

[20] Trpkov, D., Panjan, M., Kopanja, L., & Tadić, M., 2018, Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube-and sphere-like superstructures. Appl. Surf. Scie., 457, 427-438.

DOI: 10.1016/j.apsusc.2018.06.224

Google Scholar

[21] Raja, K., Mary Jaculine, M., Jose, M., Verma, S., Prince, A. A. M., Ilangovan, K., … Jerome Das, S., 2015, Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices and Microstructures, 86, 306–312.

DOI: 10.1016/j.spmi.2015.07.044

Google Scholar

[22] Mohammadikish, M., 2014, Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceram. Inter., 40(1), 1351-1358.

DOI: 10.1016/j.ceramint.2013.07.016

Google Scholar

[23] Costa, C. M., Merazzo, K. J., Gonçalves, R., Amos, C., and Lanceros-Méndez, S., Magnetically active lithium-ion batteries towards battery performance improvement, iScience, vol. 24, no. 6, p.102691, Jun. (2021).

DOI: 10.1016/j.isci.2021.102691

Google Scholar

[24] Ganguly, D., V.S., A. P., Ghosh, A., & Ramaprabhu, S. (2020). Magnetic field assisted high capacity durable Li-ion battery using magnetic α-Fe2O3 nanoparticles decorated expired drug derived N-doped carbon anode. Scientific Reports, 10(1).

DOI: 10.1038/s41598-020-67042-1

Google Scholar