[1]
Fang, S., Bresser, D. Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium and sodium ion batteries, Adv. Energy Mater. 10 (1) (2020) 1902485.
DOI: 10.1002/aenm.201902485
Google Scholar
[2]
Yao, X., Tang, C., Yuan, G., Cui, P., Xu, X., & Liu, Z. (2011). Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochemistry Communications, 13(12), 1439–1442.
DOI: 10.1016/j.elecom.2011.09.015
Google Scholar
[3]
Balogun, M.-S., Wu, Z., Luo, Y., Qiu, W., Fan, X., Long, B., … Tong, Y. (2016). High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 308, 7–17.
DOI: 10.1016/j.jpowsour.2016.01.043
Google Scholar
[4]
Yang, S., Zhou, B., Ding, Z., Zheng, H., Huang, L., Pan, J., … Zhang, H. (2015). Tetragonal hematite single crystals as anode materials for high performance lithium ion batteries. Journal of Power Sources, 286, 124–129.
DOI: 10.1016/j.jpowsour.2015.03.151
Google Scholar
[5]
Wu, K., Liu, D., Lu, W., & Zhang, K. (2018). One-pot sonochemical synthesis of magnetite@reduced graphene oxide nanocomposite for high performance Li ion storage. Ultrasonics Sonochemistry, 45, 167–172.
DOI: 10.1016/j.ultsonch.2018.03.015
Google Scholar
[6]
Wang, L., Liang, K., Wang, G., & Yang, Y. (2018). Interface-engineered hematite nanocones as binder-free electrodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 6(28), 13968–13974.
DOI: 10.1039/c8ta03106a
Google Scholar
[7]
Balasingam, S. K., Kundu, M., Balakrishnan, B., Kim, H.-J., Svensson, A. M., & Jayasayee, K. (2019). Hematite microdisks as an alternative anode material for lithium-ion batteries. Materials Letters, 247, 163–166.
DOI: 10.1016/j.matlet.2019.03.058
Google Scholar
[8]
Huang, W., Chen, K., Komarneni, S., Xue, D., Katsuki, H., Cho, W.-S., … Ma, J. (2021). Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteries and pseudocapacitors: Electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126232.
DOI: 10.1016/j.colsurfa.2021.126232
Google Scholar
[9]
Malaidurai, M., & Thangavel, R., 2018, Study of structural and magnetic properties of co-precipitated α-Fe2O3 nanocrystals. Superlattices and Microstructures, 120, 553-560.
DOI: 10.1016/j.spmi.2018.06.025
Google Scholar
[10]
Nassar, M. Y., Ahmed, I. S., & Hendy, H. S., 2018, A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Molec. Liq., 271, 844-856.
DOI: 10.1016/j.molliq.2018.09.057
Google Scholar
[11]
Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., & Panjan, M., 2019, Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. All. Comp., 792, 599-609.
DOI: 10.1016/j.jallcom.2019.03.414
Google Scholar
[12]
Paulson, E., & Jothibas, M., 2021, Significance of Thermal Interfacing in Hematite (α-Fe2O3) Nanoparticles Synthesized by Sol-Gel Method and its Characteristics Properties. Surfaces and Interfaces, 26, 101432.
DOI: 10.1016/j.surfin.2021.101432
Google Scholar
[13]
Rincón J. M., Barba Ortega, J., Malafatti, J. O. D., & Paris, E. C., 2019, Evaluation of photocatalytic activity in water pollutants and cytotoxic response of α-Fe2O3 nanoparticles. ACS omega, 4(17), 17477-17486.
DOI: 10.1021/acsomega.9b02251
Google Scholar
[14]
Fouad, D. E., Zhang, C., Mekuria, T. D., Bi, C., Zaidi, A. A., & Shah, A. H. (2019). Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: A comparative study. Ultrasonics sonochemistry, 59, 104713.
DOI: 10.1016/j.ultsonch.2019.104713
Google Scholar
[15]
Fouad, D. E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T. D., & Shah, A. H., 2019, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results in Physics, 12, 1253-1261.
DOI: 10.1016/j.rinp.2019.01.005
Google Scholar
[16]
Stanhaus, C., Alves, L. L., Ferrari, J. L., Padilha, J. C., & Goes, M. S., 2020, Hematite (α-Fe2O3) pure and doped with Eu3+ obtained by high-energy ball milling process. Mater. Chem. Phys., 254, 123385.
DOI: 10.1016/j.matchemphys.2020.123385
Google Scholar
[17]
Lassoued, A., Lassoued, M. S., Dkhil, B., Gadri, A., & Ammar, S., 2017, Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base. J. Molec. Struc., 1141, 99-106.
DOI: 10.1016/j.molstruc.2017.03.077
Google Scholar
[18]
Umar, A., Ibrahim, A. A., Kumar, R., Albargi, H., Alsaiari, M. A., & Ahmed, F., 2021, Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sensors and Actuators B: Chemical, 326, 128851.
DOI: 10.1016/j.snb.2020.128851
Google Scholar
[19]
Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., & Gadri, A., 2018, Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physica E: Low-dimensional Systems and Nanostructures, 101, 212-219.
DOI: 10.1016/j.physe.2018.04.009
Google Scholar
[20]
Trpkov, D., Panjan, M., Kopanja, L., & Tadić, M., 2018, Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube-and sphere-like superstructures. Appl. Surf. Scie., 457, 427-438.
DOI: 10.1016/j.apsusc.2018.06.224
Google Scholar
[21]
Raja, K., Mary Jaculine, M., Jose, M., Verma, S., Prince, A. A. M., Ilangovan, K., … Jerome Das, S., 2015, Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices and Microstructures, 86, 306–312.
DOI: 10.1016/j.spmi.2015.07.044
Google Scholar
[22]
Mohammadikish, M., 2014, Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceram. Inter., 40(1), 1351-1358.
DOI: 10.1016/j.ceramint.2013.07.016
Google Scholar
[23]
Costa, C. M., Merazzo, K. J., Gonçalves, R., Amos, C., and Lanceros-Méndez, S., Magnetically active lithium-ion batteries towards battery performance improvement, iScience, vol. 24, no. 6, p.102691, Jun. (2021).
DOI: 10.1016/j.isci.2021.102691
Google Scholar
[24]
Ganguly, D., V.S., A. P., Ghosh, A., & Ramaprabhu, S. (2020). Magnetic field assisted high capacity durable Li-ion battery using magnetic α-Fe2O3 nanoparticles decorated expired drug derived N-doped carbon anode. Scientific Reports, 10(1).
DOI: 10.1038/s41598-020-67042-1
Google Scholar