Transparent Conductive Oxides. Part II. Specific Focus on ITO, ZnO-AZO, SnO2-FTO Families for Photovoltaics Applications

Article Preview

Abstract:

This contribution is the second part of a presentation of transparent conductive oxides, TCO. After a general overview in the first publication of properties and applications of TCO related to the type of oxide and dopant, the growth techniques and the temperature, we focus in the current one on three families of TCO used as transparent electrodes in photovoltaic, PV, cells and modules. Indeed, new generations of solar cells need optimizing TCO with improved conductivity and transparency depending on substrate, type of PV cells, and conditions of used. Thus, ITO, ZnO-AZO, and SnO2-FTO TCO families are considered. ITO presents the best combination of electrical and optical properties but TCO based on the two other families are challenging in many photovoltaic applications for obtaining low cost and environmental friendly electrodes with comparable performances. Due to the high number of publications on TCO for PV applications, this contribution does not claim to be exhaustive but makes it possible to summarize the main information concerning these materials by approaching them in a common methodology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-272

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.americanelements.com/indium-tin-oxide-ito-50926-11-9.

Google Scholar

[2] Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, Indium-Tin-Oxide for High-performance Electro-optic Modulation, Nanophotonics, 4 (2015) 198–213.

DOI: 10.1515/nanoph-2015-0006

Google Scholar

[3] J. C. C. Fan and J. B. Goodenough, X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films, Journal of Applied Physics, 48 (1977) 3524–3531.

DOI: 10.1063/1.324149

Google Scholar

[4] O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, High quality ITO thin films grown by dc and RF sputtering without oxygen, J. Phys. D: Appl. Phys., 43 (2010) 055402.

DOI: 10.1088/0022-3727/43/5/055402

Google Scholar

[5] M. Nisha, S. Anusha, A. Antony, R. Manoj, and M. K. Jayaraj, Effect of substrate temperature on the growth of ITO thin films, Applied Surface Science, 252 (2005) 1430–1435.

DOI: 10.1016/j.apsusc.2005.02.115

Google Scholar

[6] S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, Properties of tin doped indium oxide thin films prepared by magnetron sputtering, Journal of Applied Physics, 54 (1983) 3497–3501.

DOI: 10.1063/1.332415

Google Scholar

[7] L. Gupta, A. Mansingh, and P. K. Srivastava, Band gap narrowing and the band structure of tin-doped indium oxide films, Thin Solid Films, 176 (1989) 33–44.

DOI: 10.1016/0040-6090(89)90361-1

Google Scholar

[8] N. M. Ahmed, F. A. Sabah, H. I. Abdulgafour, A. Alsadig, A. Sulieman, and M. Alkhoaryef, The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement, Results in Physics, 13 (2019) 102159.

DOI: 10.1016/j.rinp.2019.102159

Google Scholar

[9] Ü. Özgür et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (2005) 041301.

Google Scholar

[10] K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer Science & Business Media, (2007).

DOI: 10.1007/978-3-540-73612-7

Google Scholar

[11] S. Johari, N. Y. Muhammad, and M. R. Zakaria, Study of zinc oxide thin film characteristics, EPJ Web Conf., 162 (2017) 01057.

DOI: 10.1051/epjconf/201716201057

Google Scholar

[12] M. Bouderbala et al., Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Physica B: Condensed Matter, 403 (2008) 3326–3330.

DOI: 10.1016/j.physb.2008.04.045

Google Scholar

[13] M.-C. Jun, S.-U. Park, and J.-H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films, Nanoscale Research Letters, 7 (2012) 639.

DOI: 10.1186/1556-276x-7-639

Google Scholar

[14] T. Prasada Rao, M. C. Santhosh Kumar, A. Safarulla, V. Ganesan, S. R. Barman, and C. Sanjeeviraja, Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis, Physica B: Condensed Matter, 405 (2010) 2226–2231.

DOI: 10.1016/j.physb.2010.02.016

Google Scholar

[15] T. V. Vimalkumar, N. Poornima, C. S. Kartha, and K. P. Vijayakumar, Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films, Materials Science and Engineering: B, 175 (2010) 29–35.

DOI: 10.1016/j.mseb.2010.06.012

Google Scholar

[16] G. Epurescu et al., p-type ZnO thin films grown by RF plasma beam assisted Pulsed Laser Deposition, Superlattices and Microstructures, 42 (2007) 79–84.

DOI: 10.1016/j.spmi.2007.04.072

Google Scholar

[17] V. H. Nguyen et al., Deposition of ZnO based thin films by atmospheric pressure spatial atomic layer deposition for application in solar cells, Journal of Renewable and Sustainable Energy, 9 (2017) 021203.

DOI: 10.1063/1.4979822

Google Scholar

[18] A. Douayar, R. Diaz, F. C. E. Moursli, G. Schmerber, A. Dinia, and M. Abd-Lefdil, Fluorine-doped ZnO thin films deposited by spray pyrolysis technique, Eur. Phys. J. Appl. Phys., 53 (2011).

DOI: 10.1051/epjap/2010100364

Google Scholar

[19] P. Nunes, E. Fortunato, and R. Martins, Influence of the post-treatment on the properties of ZnO thin films, (2001).

Google Scholar

[20] A. Bougrine, M. Addou, A. Kachouane, J. C. Bérnède, and M. Morsli, Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis, Materials Chemistry and Physics, 91 (2005) 247–252.

DOI: 10.1016/j.matchemphys.2003.11.033

Google Scholar

[21] F. Hijazi, Etude des propriétés physiques et de transport dans des films d'ITO et de ZnO (dopé ou non) pour dispositifs optoélectroniques organiques, Limoges, (2010).

Google Scholar

[22] M. Hjiri, L. El Mir, S. G. Leonardi, A. Pistone, L. Mavilia, and G. Neri, Al-doped ZnO for highly sensitive CO gas sensors, Sensors and Actuators B: Chemical, 196 (2014) 413–420.

DOI: 10.1016/j.snb.2014.01.068

Google Scholar

[23] Y. Zhang et al., ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity, ACS Appl. Mater. Interfaces, 12 (2020) 26161–26169.

DOI: 10.1021/acsami.0c04580

Google Scholar

[24] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, Effect of different dopant elements on the properties of ZnO thin films, Vacuum, 64 (2002) 281–285.

DOI: 10.1016/s0042-207x(01)00322-0

Google Scholar

[25] J. Rombach et al., The role of surface electron accumulation and bulk doping for gas-sensing explored with single-crystalline In2O3 thin films, Sensors and Actuators B: Chemical, 236 (2016) 909–916.

DOI: 10.1016/j.snb.2016.03.079

Google Scholar

[26] C. S. Prajapati, A. Kushwaha, and P. P. Sahay, Effect of Al dopants on the structural, optical and gas sensing properties of spray-deposited ZnO thin films, Materials Chemistry and Physics, (2013).

DOI: 10.1016/j.matchemphys.2013.07.015

Google Scholar

[27] Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique, Applied Surface Science, 258(2012) 9604–9609.

DOI: 10.1016/j.apsusc.2012.05.156

Google Scholar

[28] X. Shu-Wen, A Study of Annealing Time Effects on the Properties of Al:ZnO, Physics Procedia, 25 (2012).

Google Scholar

[29] C. Lennon, R. Kodama, Y. Chang, S. Sivananthan, and M. Deshpande, Effects of annealing in N2 on sputtered Al-doped ZnO thin films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27, (2009) 1641–1645.

DOI: 10.1116/1.3110020

Google Scholar

[30] D. S. Kim et al., Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells, Applied Surface Science, 259 (2012) 596–599.

DOI: 10.1016/j.apsusc.2012.07.082

Google Scholar

[31] B. J. Babu, A. Maldonado, S. Velumani, and R. Asomoza, Electrical and optical properties of ultrasonically sprayed Al-doped zinc oxide thin films, Materials Science and Engineering: B, 174 (2010) 31–37.

DOI: 10.1016/j.mseb.2010.03.010

Google Scholar

[32] C. M. Muiva, T. S. Sathiaraj, and K. Maabong, Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications, Ceramics International, 37 (2011) 555–560.

DOI: 10.1016/j.ceramint.2010.09.042

Google Scholar

[33] K. Ravichandran, N. J. Begum, S. Snega, and B. Sakthivel, Properties of Sprayed Aluminum-Doped Zinc Oxide Films—A Review, Materials and Manufacturing Processes, (2014).

DOI: 10.1080/10426914.2014.930961

Google Scholar

[34] M. Benhaliliba, C. E. Benouis, M. S. Aida, A. S. Juarez, F. Yakuphanoglu, and A. T. Silver, A comparative study on structural, optical, photoconductivity properties of In and Al doped ZnO thin films grown onto glass and FTO substrates grown by spray pyrolysis process, Journal of Alloys and Compounds, 2 (2010) 548–553.

DOI: 10.1016/j.jallcom.2010.07.023

Google Scholar

[35] A. E. Manouni et al., Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis, Superlattices and Microstructures, 39 (2006) 185–192.

DOI: 10.1016/j.spmi.2005.08.041

Google Scholar

[36] Y. Igasaki and H. Saito, Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire, Journal of Applied Physics, 69 (1991) 2190–2195.

DOI: 10.1063/1.348748

Google Scholar

[37] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, 79 (2005) 47–154.

DOI: 10.1016/j.progsurf.2005.09.002

Google Scholar

[38] S. Das and V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Progress in Materials Science, 66 (2014) 112–255.

DOI: 10.1016/j.pmatsci.2014.06.003

Google Scholar

[39] Information available on http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-35212013000300005.

Google Scholar

[40] G. Rey, Etude d'oxydes métalliques nanostructurés (ZnO, SnO2) pour applications photovoltaïques notamment oxydes transparents conducteurs et cellules solaires à colorant, Grenoble (2012).

Google Scholar

[41] M. M. Tavakoli et al., Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method, Sci Rep, 5 (2015) 14083.

DOI: 10.1038/srep14083

Google Scholar

[42] Z. Banyamin, P. Kelly, G. West, and J. Boardman, Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering, Coatings, 4 (2014) 732–746.

DOI: 10.3390/coatings4040732

Google Scholar

[43] M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, and M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis, Materials Research Bulletin, 44 (2009) 1458–1461.

DOI: 10.1016/j.materresbull.2009.02.019

Google Scholar

[44] L. T. C. Tuyen, S.-R. Jian, N. T. Tien, and P. H. Le, Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping, Materials, 12 (2019).

DOI: 10.3390/ma12101665

Google Scholar