[1]
C. Himadri, Simulation of transport processes in squeeze casting, J. Mat. Proc.Tech. 186 (2007).
Google Scholar
[2]
F. Xia, X.S. Gao, M.X. Liang, Y.C. Guo, J.P. Li, Z. Yang, et al. Effect of thermal exposure on microstructure and high-temperature fatigue life of Al-Si piston alloys, J Mater. Res. Tech. 9 (6) (2020), 12926-12935.
DOI: 10.1016/j.jmrt.2020.09.018
Google Scholar
[3]
J. Chen, C. Liu, F. Wen, Q. Zhou, H. Zhao, R. Guan, Effect of microalloying and tensile deformation on the internal structures of eutectic Si phase in Al-Si alloy, J. Mater. Res. Tech. 9 (3) (2020), 4682-4691.
DOI: 10.1016/j.jmrt.2020.02.096
Google Scholar
[4]
M. Dias, R. Oliveira, R. Kakitani, N. Cheung, H. Henein, J.E. Spinelli, et al. Effects of solidification thermal parameters and Bi doping on silicon size, morphology and mechanical properties of Al-15wt.% Si-3.2wt.% Bi and Al-18wt.% Si-3.2wt.% Bi alloys, J Mater. Res. Tech. 9 (3) (2020), 3460-3470.
DOI: 10.1016/j.jmrt.2020.01.083
Google Scholar
[5]
Du. Zhi-ming, Chen. Gang, Cao. Guang-Xiang, Liu. Jun, Li. Hong-Wei, Zhang. Xin, Xie. Shui-sheng, Homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging, Trans. Nonfer. Met. Soc. Cn. 21, (2011) 2384-2390.
DOI: 10.1016/s1003-6326(11)61024-8
Google Scholar
[6]
F. Yin, G.X. Wang, S.Z. Hong, Z.P. Zeng, Technological study of liquid die forging for the aluminum alloy connecting rod of an air compressor, J. Mater. Proces. Techn. 139 (2003) 462–464.
DOI: 10.1016/s0924-0136(03)00554-5
Google Scholar
[7]
M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamotoc, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta Mater. 60 (2012) 3920-3928.
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[8]
Pavan Chintalapati, Robinrobin D. Foley, Chair Viola L. Acoff Krishan K. Chawla Raymond J. Donahue Gregg M. Janowski, Harry E. Littleton (Ad Hoc), Solidification Under Pressure of Aluminum Castings, (2009).
Google Scholar
[9]
P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nagd, J. Kaduke, S. Shankar, R. Banerjee, T. Shibata, Probing the local atomic structure of Sr-modified Al-Si alloys, Act. Mater. 2014, Vol.65, Pages 185-193.
DOI: 10.1016/j.actamat.2013.10.060
Google Scholar
[10]
Santosh B Ghanti, Robin D. Foley, J Barry Andrews Uday Vaidya, The Effects of Solidification Under Pressure On Properties of Cast Aluminum Alloys, (2011).
Google Scholar
[11]
S.J. Luo, L.X. Hu, H.J. Li Harbin, The effect of plastic flow on the strengthening and toughening of the alloy during liquid-metal forming under pressure, J. Mater. Proces. Tech. 49 (3-4) (1995) 425-429.
DOI: 10.1016/0924-0136(94)01348-5
Google Scholar
[12]
S. Murali, M.S. Yong, Liquid forging of thin Al-Si structures, J. Mater. Proces. Tech. 210 (2010) 1276-1281.
DOI: 10.1016/j.jmatprotec.2010.03.014
Google Scholar
[13]
V.G. Trifonov, G.R. Khalikova, Liquid forging processing of automobile wheels, lettersonmaterials.com, 3 (2013) 56-59.
Google Scholar
[14]
Wang Shao-zhu, JI Ze-sheng, Sugiyama Sumio, HU Mao-Liang, Segregation behavior of ADC12 alloy Differential Support formed by near-liquidus squeeze casting, Materials, and Design (2014).
DOI: 10.1016/j.matdes.2014.09.065
Google Scholar
[15]
Z. Brown, C. Barnes, J. Bigelow, P. Dodd, Squeeze cast automotive applications and design considerations, la metallurgia italiana, 2009, pages 1-4.
Google Scholar
[16]
Z. Chen, C. Ma, J. Zhao, Eutectic nucleation in Al-7 wt pct Si-Mg casting alloys, Act. Met. Sin. 25 (5) (2012) 340-346.
Google Scholar
[17]
Zhizhong Sun, Modeling and experimental study on heat transfer in the squeeze casting of magnesium alloy am60 and aluminum alloy A443, (2011).
Google Scholar