Eutectic Si Accumulation in Liquid Forged A356 Alloy Wheel and its Adverse Effect on Tensile Fracture Behavior

Article Preview

Abstract:

This investigation is aimed to study microstructural heterogeneities raised due to the inherent melt transport phenomenon and their effect on mechanical properties. Modified, Cleaned, and degassed A356 aluminum alloy melt was poured at 704°C in H13 tool steel die, while temperatures of lower die segment, side segment, and upper segment were 368°C, 375°C, and 290°C respectively. Then liquid melt was forged till its complete solidification under pressure using a hydraulic forging press. The liquid forged wheel was subjected to metallurgical investigation of microstructure, mechanical properties, and fractography of tensile test samples at different cross-sections along the protrusion of the wheel. Results conclude gradual variation in accumulation of eutectic Si phase from surface to the center of thickness and from flange to the outer rim region. The elastic properties are not affected by accumulation of the eutectic silicon however, plasticity have adversely affected with decrease in effective ductile cross-section. Also, refinement of primary α-aluminum and modification in the eutectic silicon phase in specific areas of the wheel is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-177

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Himadri, Simulation of transport processes in squeeze casting, J. Mat. Proc.Tech. 186 (2007).

Google Scholar

[2] F. Xia, X.S. Gao, M.X. Liang, Y.C. Guo, J.P. Li, Z. Yang, et al. Effect of thermal exposure on microstructure and high-temperature fatigue life of Al-Si piston alloys, J Mater. Res. Tech. 9 (6) (2020), 12926-12935.

DOI: 10.1016/j.jmrt.2020.09.018

Google Scholar

[3] J. Chen, C. Liu, F. Wen, Q. Zhou, H. Zhao, R. Guan, Effect of microalloying and tensile deformation on the internal structures of eutectic Si phase in Al-Si alloy, J. Mater. Res. Tech. 9 (3) (2020), 4682-4691.

DOI: 10.1016/j.jmrt.2020.02.096

Google Scholar

[4] M. Dias, R. Oliveira, R. Kakitani, N. Cheung, H. Henein, J.E. Spinelli, et al. Effects of solidification thermal parameters and Bi doping on silicon size, morphology and mechanical properties of Al-15wt.% Si-3.2wt.% Bi and Al-18wt.% Si-3.2wt.% Bi alloys, J Mater. Res. Tech. 9 (3) (2020), 3460-3470.

DOI: 10.1016/j.jmrt.2020.01.083

Google Scholar

[5] Du. Zhi-ming, Chen. Gang, Cao. Guang-Xiang, Liu. Jun, Li. Hong-Wei, Zhang. Xin, Xie. Shui-sheng, Homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging, Trans. Nonfer. Met. Soc. Cn. 21, (2011) 2384-2390.

DOI: 10.1016/s1003-6326(11)61024-8

Google Scholar

[6] F. Yin, G.X. Wang, S.Z. Hong, Z.P. Zeng, Technological study of liquid die forging for the aluminum alloy connecting rod of an air compressor, J. Mater. Proces. Techn. 139 (2003) 462–464.

DOI: 10.1016/s0924-0136(03)00554-5

Google Scholar

[7] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamotoc, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta Mater. 60 (2012) 3920-3928.

DOI: 10.1016/j.actamat.2012.03.031

Google Scholar

[8] Pavan Chintalapati, Robinrobin D. Foley, Chair Viola L. Acoff Krishan K. Chawla Raymond J. Donahue Gregg M. Janowski, Harry E. Littleton (Ad Hoc), Solidification Under Pressure of Aluminum Castings, (2009).

Google Scholar

[9] P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nagd, J. Kaduke, S. Shankar, R. Banerjee, T. Shibata, Probing the local atomic structure of Sr-modified Al-Si alloys, Act. Mater. 2014, Vol.65, Pages 185-193.

DOI: 10.1016/j.actamat.2013.10.060

Google Scholar

[10] Santosh B Ghanti, Robin D. Foley, J Barry Andrews Uday Vaidya, The Effects of Solidification Under Pressure On Properties of Cast Aluminum Alloys, (2011).

Google Scholar

[11] S.J. Luo, L.X. Hu, H.J. Li Harbin, The effect of plastic flow on the strengthening and toughening of the alloy during liquid-metal forming under pressure, J. Mater. Proces. Tech. 49 (3-4) (1995) 425-429.

DOI: 10.1016/0924-0136(94)01348-5

Google Scholar

[12] S. Murali, M.S. Yong, Liquid forging of thin Al-Si structures, J. Mater. Proces. Tech. 210 (2010) 1276-1281.

DOI: 10.1016/j.jmatprotec.2010.03.014

Google Scholar

[13] V.G. Trifonov, G.R. Khalikova, Liquid forging processing of automobile wheels, lettersonmaterials.com, 3 (2013) 56-59.

Google Scholar

[14] Wang Shao-zhu, JI Ze-sheng, Sugiyama Sumio, HU Mao-Liang, Segregation behavior of ADC12 alloy Differential Support formed by near-liquidus squeeze casting, Materials, and Design (2014).

DOI: 10.1016/j.matdes.2014.09.065

Google Scholar

[15] Z. Brown, C. Barnes, J. Bigelow, P. Dodd, Squeeze cast automotive applications and design considerations, la metallurgia italiana, 2009, pages 1-4.

Google Scholar

[16] Z. Chen, C. Ma, J. Zhao, Eutectic nucleation in Al-7 wt pct Si-Mg casting alloys, Act. Met. Sin. 25 (5) (2012) 340-346.

Google Scholar

[17] Zhizhong Sun, Modeling and experimental study on heat transfer in the squeeze casting of magnesium alloy am60 and aluminum alloy A443, (2011).

Google Scholar