[1]
T. Dursun, C. Soutis. Recent developments in advanced aircraft aluminium alloys, Mater. Des. 2014, 56(4): 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[2]
L. Wei, B. Han, F. Ye, et al. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al–Zn–Mg–Cu alloy formed by spray forming, J. Mater. Res. Technol. 2020, 9(3): 6850-6858.
DOI: 10.1016/j.jmrt.2020.03.121
Google Scholar
[3]
B. Zhou, B. Liu, S. Zhang. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review, Metals, 2021, 11(5): 718.
DOI: 10.3390/met11050718
Google Scholar
[4]
A. Azarniya, A.K. Taheri, K.K. Taheri. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloy. Compd. 2019, 781: 945-983.
DOI: 10.1016/j.jallcom.2018.11.286
Google Scholar
[5]
P.A. Rometsch, Y. Zhang, S. Knight. Heat treatment of 7xxx series aluminium alloys—Some recent developments, Trans. Nonferrous Metals Soc. 2014, 24(7): 2003-2017.
DOI: 10.1016/s1003-6326(14)63306-9
Google Scholar
[6]
C. Sigli, F. De Geuser, A. Deschamps, et al. Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening, Cr. Phys. 2018, 19(8): 688-709.
DOI: 10.1016/j.crhy.2018.10.012
Google Scholar
[7]
W.T. Huo, J.T. Shi, L.G. Hou, et al. An improved thermo-mechanical treatment of high-strength Al-Zn-Mg-Cu alloy for effective grain refinement and ductility modification, J. Mater. Process. Tech. 2017, 239:303-314.
DOI: 10.1016/j.jmatprotec.2016.08.027
Google Scholar
[8]
T. Ying, L. Gu, X. Tang, et al. Effect of Sc microalloying on microstructure evolution and mechanical properties of extruded Al-Zn-Mg-Cu alloys, Mater. Sci. Eng. A. 2022, 831: 142197.
DOI: 10.1016/j.msea.2021.142197
Google Scholar
[9]
X. Liu, Y. Liu, Z. Zhou, et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy, J. Mater. Sci. Technol. 2022, 124: 41-52.
DOI: 10.1016/j.jmst.2021.12.078
Google Scholar
[10]
K. Schwalbe. On the influence of microstructure on crack propagation mechanisms and fracture toughness of metallic materials, Eng. Frac. Mech. 1977, 9: 795-832.
DOI: 10.1016/0013-7944(77)90004-2
Google Scholar
[11]
M. Yu, Y. Zhang, X. Li, et al. Effect of recrystallization on plasticity, fracture toughness and stress corrosion cracking of a high-alloying Al-Zn-Mg-Cu alloy, Mater. Lett. 2020, 275:128074.
DOI: 10.1016/j.matlet.2020.128074
Google Scholar
[12]
R.O. Ritchie. The conflicts between strength and toughness, Nat. Mater. 2011, 10(11): 817-822.
Google Scholar
[13]
P. Zhou, J. Zhou, Z. Ye, et al. Effect of grain size and misorientation angle on fatigue crack growth of nanocrystalline materials, Mater. Sci. Eng. A. 2016, 663: 1-7.
DOI: 10.1016/j.msea.2016.03.105
Google Scholar
[14]
W.B. Shou, D.Q. Yi, H.Q. Liu, et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy, Arch. Civ. Mech. Eng. 2016, 16(3): 304-312.
DOI: 10.1016/j.acme.2016.01.004
Google Scholar
[15]
G. Huang, Z. Li, L. Sun, et al. Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes, Rare Metals. 2021, 40(9): 2523-2529.
DOI: 10.1007/s12598-020-01496-0
Google Scholar