[1]
C. Shu, Q. Yao, K. S. Yeo, Y. D. Zhu, Numerical analysis of flow and thermal fields in arbitrary eccentric annulus by differential quadrature method, Heat and Mass Transfer. 38(2002)597–608.
DOI: 10.1007/s002310100193
Google Scholar
[2]
M. A. I. El-Shaarawi, E. M. A. Mokheimer, A. Jamal, Conjugate effects on steady laminar natural convection heat transfer in vertical eccentric annuli, International Journal for Computational Methods Engineering Science Mechanics. 6(2005) 235–250.
DOI: 10.1080/155022891009288
Google Scholar
[3]
M. Perlmutter, J. R. Howell, Radiant transfer through a gray gas between concentric cylinders using Monte Carlo, Trans. ASME J. Heat Transf. 86 (1964)169–179.
DOI: 10.1115/1.3687090
Google Scholar
[4]
T. H. Kuehn, R. J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders,. Journal of Fluid Mechanics. 74 (1976) 695–719.
DOI: 10.1017/s0022112076002012
Google Scholar
[5]
T.H. Kuehn, R.J. Goldstein, An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli, ASME Journal of Heat Transfer, 100 (1978) 635–640.
DOI: 10.1115/1.3450869
Google Scholar
[6]
J. F. Heyda, A green function solution for the laminar incompressible flow between non concentric cylinders, Journal of the Franklin Institute. 267 (1959) 25–34.
DOI: 10.1016/0016-0032(59)90034-1
Google Scholar
[7]
C. J. Ho, Y. H. Lin, T. C. Chen, A numerical study of natural convection in concentric and eccentric horizontal cylindrical annuli with mixed boundary conditions, International Journal of Heat and Fluid Flow. 10 (1989) 40–47.
DOI: 10.1016/0142-727x(89)90053-2
Google Scholar
[8]
U. Projahn, H. Reiger, H. Beer, Numerical analysis of laminar natural convection between concentric and eccentric cylinders, Journal of Numerical Heat Transfer. 4 (1981) 131–146.
DOI: 10.1080/01495728108961783
Google Scholar
[9]
M. Y. Ha, J. G. Kim, Numerical simulation of natural convection in annuli with internal fns, J. Mech. Sci. Technol. 18 (2004)718–730.
DOI: 10.1007/bf02983656
Google Scholar
[10]
H. Hadidi, R. Kamali, Numerical simulation of a non-equilibrium electrokinetic micro/nano fluidic mixer, J. Micromech. Microeng. 26 (2016) 035019.
DOI: 10.1088/0960-1317/26/3/035019
Google Scholar
[11]
M. H. Matin, A.W. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders, International Communications in Heat and Mass Transfer, 43 (2013) 112–121.
DOI: 10.1016/j.icheatmasstransfer.2013.02.006
Google Scholar
[12]
S.A. Nada, M.A. Said, Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus, International Journal of Thermal Sciences, 137(2019) 121–137.
DOI: 10.1016/j.ijthermalsci.2018.11.026
Google Scholar
[13]
E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer, 35 (2008) 657–665.
DOI: 10.1016/j.icheatmasstransfer.2007.11.004
Google Scholar
[14]
N.C. Roy, Natural convection in the annulus bounded by two wavy wall cylinders having a chemically reacting fluid, International Journal of Heat and Mass Transfer, 138 (2019) 1082–1095.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.133
Google Scholar
[15]
S. Pandey, Y. G. Park, M. Y. Ha, An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes, International Journal of Heat and Mass Transfer, 138 (2019) 762–795.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.097
Google Scholar
[16]
A. K. Vanita, Effect of radial magnetic field on natural convection flow in alternate conducting vertical concentric annuli with ramped temperature, Engineering Science and Technology, 19 (2016) 1436–1451.
DOI: 10.1016/j.jestch.2016.04.010
Google Scholar
[17]
H. Masoumi, M.S. Aghighi, A. Ammar, A. Nourbakhsh, Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders, International Journal of Heat and Mass, 138 (2019) 1188–1198.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.092
Google Scholar
[18]
A.M. Aly, Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects, Journal of the Taiwan Institute of Chemical Engineers, 70 (2017)88–103.
DOI: 10.1016/j.jtice.2016.10.050
Google Scholar
[19]
H. Laidoudi, M. Helmaoui, M. Bouzit, A. Ghenaim. Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form, Thermal Science. 25 (2021) 3701–3714.
DOI: 10.2298/tsci200201190l
Google Scholar
[20]
H. Laidoudi, Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement, Metallurgical and Materials Engineering, 26 (2020) 87–102.
DOI: 10.30544/481
Google Scholar
[21]
M. Arbaban, M. R. Salimpour, Enhancement of laminar natural convective heat transfer in concentric annuli with radial fins using nanofluids, Heat and Mass Transfer, 51 (2015) 353–363.
DOI: 10.1007/s00231-014-1380-7
Google Scholar
[22]
F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research, 48 (2018)135–150.
DOI: 10.1002/htj.21375
Google Scholar
[23]
H. Mihoubi, B. Bouderah, T. Tayebi, Improvement of free convection heat transfer in a concentric cylindrical annulus heat exchanger using nanofluid, Mathematical Modelling of Engineering Problems, 6 (2019) 566–574.
DOI: 10.18280/mmep.060412
Google Scholar
[24]
A. Shadlaghani, M. Farzaneh, M. Shahabadi, M. R. Tavakoli, M.R. Safaei, I. Mazinani, Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections, Journal of Thermal Analysis and Calorimetry, 135(2019)1429–1442.
DOI: 10.1007/s10973-018-7542-y
Google Scholar
[25]
S. Touzani, A. Idrissi, A. Cheddadi, M. T. Ouazzani, Numerical Study of Laminar Natural Convection in a Finned Annulus: Low Isothermal Blocks Positions, Journal of Engineering Physics and Thermophysics, 92(2019) 1064–1071.
DOI: 10.1007/s10891-019-02021-6
Google Scholar
[26]
X. Qiang, I. Siddique, K. Sadiq, N. AliShah, Double diffusive MHD convective flows of a viscous fluid under influence of the inclined magnetic field, source/sink and chemical reaction, Alexandria Engineering Journal, 59(2020) 4171-4181.
DOI: 10.1016/j.aej.2020.07.023
Google Scholar
[27]
M.B. Riaz, I. Siddiqui, S.T. Saeed, A. Atangana, MHD Oldroyd-B fluid with slip condition in view of local and nonlocal kernels, J. Appl. Comput. Mech., 7 (2021) 116-127.
Google Scholar
[28]
M. Nadeem, I. Siddique, F. Jarad, R. N. Jamil, Numerical study of MHD third-grade fluid flow through an inclined channel with ohmic heating under fuzzy environment, 9137479 (2021) 17.
DOI: 10.1155/2021/9137479
Google Scholar
[29]
D. Vieru, I. Siddique, Axial flow of several non-newtonian fluids through a circular cylinder, International Journal of Applied Mechanics, 2(2010) 543-556.
DOI: 10.1142/s1758825110000640
Google Scholar
[30]
I. Siddique, N. A. Shah, K. A. Abro, Thermography of ferromagnetic Walter's-B fluid through varying thermal stratification, South African Journal of Chemical Engineering, 36 (2021)118-126.
DOI: 10.1016/j.sajce.2020.12.004
Google Scholar
[31]
I. A. Mirza, M. S. Akram, I. Siddique, Flows of a generalized second grade fluid in a cylinder due to a velocity shock, Chinese Journal of Physics, 60 (2019) 720-730.
DOI: 10.1016/j.cjph.2019.06.009
Google Scholar
[32]
M. Marin, M.I.A. Othman, I.A. Abbas, An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids, Journal of Computational and Theoretical Nanoscience, 12 (2015) 1594-1598.
DOI: 10.1166/jctn.2015.3934
Google Scholar
[33]
A. Hobiny, F. Alzahrani, I. Abbas, M. Marin, The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation, Symmetry, 12(2020) 602.
DOI: 10.3390/sym12040602
Google Scholar