[1]
B. Thomas, K. S. Sumam, Blood flow in human arterial system-A review, Proc. Tech. 24(2016) 339 – 346.
DOI: 10.1016/j.protcy.2016.05.045
Google Scholar
[2]
F. Yilmaz, M. Y. Gundogdu, A critical review on the blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Koreo-Australia Rheolog J. 20 (4) (2008)197 – 211.
Google Scholar
[3]
A. Ogulu, A.R. Bestman, Deep heat muscle treatment –a mathematical model 1, Acta Phys. Hung. 73(1) (1993) 3 – 16.
DOI: 10.1007/bf03054177
Google Scholar
[4]
A. Ogulu, E. Amos, Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform magnetic field and time-dependent suction, Int. Commun. Heat. Mass. Transf. 34 (2007)989 - 995.
DOI: 10.1016/j.icheatmasstransfer.2007.05.012
Google Scholar
[5]
F. Ali, S. Yousaf, I. Khan, N. A. Sheikh, A new idea of Atangana-Baleanu time fractional derivatives to blood flow with magnetics particles in a circular cylinder: Two phase flow model, J. Magn. Magn. Mater. 486(2019)165282.
DOI: 10.1016/j.jmmm.2019.165282
Google Scholar
[6]
S. Maiti, S. Shaw, G.C. Shit, Caputo-Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation, Physica A, Stat. Mech. Applic. 540(2020) 123149.
DOI: 10.1016/j.physa.2019.123149
Google Scholar
[7]
V.K. Sud, H. E. Von Gierke, I. Kaeps H. L. Oestreicher, Blood flow under the influence of externally applied periodic acceleration in large and small arteries, J. Med. Biom. Eng.Comput. 21 (1983) 446 – 452.
DOI: 10.1007/bf02442632
Google Scholar
[8]
V.K. Sud, G. S. Sekhon, Arterial flow under periodic body acceleration. Bull. Math. Bio. 47(1) (1985) 35 – 52.
DOI: 10.1016/s0092-8240(85)90004-7
Google Scholar
[9]
V.K. Sud, G. S. Sekhon, Analysis of blood flow through a model of the human arterial system under periodic body acceleration, J. Biomed. 19 (1986) 929 – 941.
DOI: 10.1016/0021-9290(86)90188-0
Google Scholar
[10]
G. C. Shit, S. Maiti, M. Roy, J. C Misra, Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study, J. Math. Comp. Simul. 166(2019)432 – 450.
DOI: 10.1016/j.matcom.2019.06.015
Google Scholar
[11]
S. Chakravarty, A. Kr. Sannigrahi, A non-linear mathematical model of blood flow in a constricted artery experiencing body acceleration, J. Math. Comp. model. 29(1999) 9 – 25.
DOI: 10.1016/s0895-7177(99)00067-9
Google Scholar
[12]
K. P. Kumar, W. Paul, C. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility, Process Biochem.46 (10) (2011) 2007–2013.
DOI: 10.1016/j.procbio.2011.07.011
Google Scholar
[13]
T. Sochi, Non-Newtonian rheology in blood circulation, University College London, Department of Physics & Astronomy, Gower Street, London, WC1E 6BT, 2014. arXiv: 1306.2067 [physics.flu-dyn]
DOI: 10.3934/ipi.2014.8.811
Google Scholar
[14]
S. U. Siddiqui, S. R. Shah, Geeta, A biomechanical approach to study the effect of body acceleration and slip velocity through stenotic artery, J. Appl. Math. Comp. 261(2015) 148 – 155.
DOI: 10.1016/j.amc.2015.03.082
Google Scholar
[15]
R.R. Burton, S.D. Levercott Jr., E. D. Micaelsow, "Man of high sustained +G Acceleration: A Review," Aerospace Med. 46 (1974) 1251 – 1253.
Google Scholar
[16]
S. Sharma, U. Singh, V. K. Katiyar, Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube, J. Magn. Magn. Mat. 377(2015)395- 401.
DOI: 10.1016/j.jmmm.2014.10.136
Google Scholar
[17]
S. Majee, G. C. Shit, Numerical investigation of MHD flow of blood and heat transfer enhancement in arterial segment, J. Magn. Magn. Mat. 424(2017)137 – 147.
DOI: 10.1016/j.jmmm.2016.10.028
Google Scholar
[18]
G. C. Shit, S. Majee, Computational modeling of MHD flow of blood and heat transfer enhancement in a slowly varying arterial segment, Intern. J. Heat and Fluid Flow. 70(2018)237 – 246.
DOI: 10.1016/j.ijheatfluidflow.2018.02.016
Google Scholar
[19]
N.A. Shah, X. Wang, H. Qi, S. Wang, A. Hajizadeh, Transient electro-osmotic slip flow of an Oldroyd-B fluid with time-fractional Caputo-Fabrizio derivative, J. Appl. Comput. Mech. 5(4) (2019)779 - 790.
Google Scholar
[20]
M. Abdulhameed, D. Vieru, R. Roslan, Modelling electro-magneto-hydrodynamic thermos-fluidic transport of biofluids with new trend of fractional derivative without singular kernel, Physica A, Stat. Mech. Applic. 484(2017) 233 -252.
DOI: 10.1016/j.physa.2017.05.001
Google Scholar
[21]
G.T. Adamu, A. M. Kwami, M. Abdulhameed, D.G. Yakubu, Effects of retardation time on non-Newtonian electro-osmotic flow in a micro-channel, Diff. Found. 26 (2020) 39 – 53.
DOI: 10.4028/www.scientific.net/df.26.39
Google Scholar
[22]
M. Abdulhameed, D. Vieru, R. Roslan, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Farizio derivatives through circular tudes, Comput. Math. Applic. 74 (10) (2017) 2503 – 2519.
DOI: 10.1016/j.camwa.2017.07.040
Google Scholar
[23]
L. Yaqing, L. Zheng, X. Zhang, Unsteady MHD Couette flow of generalized Oldroyd-B fluid with fractional derivative, J Comput. Math. Applic. 61(2011) 443 – 450.
DOI: 10.1016/j.camwa.2010.11.021
Google Scholar
[24]
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc, New York, 1993.
Google Scholar
[25]
C. D. K. Bansi, C. B. Tabi, T. G. Motsumi, A. Mohamadou, Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magn. Magn. Mat. 456(2018)38-45.
DOI: 10.1016/j.jmmm.2018.01.079
Google Scholar
[26]
N.A. Shah, V. Dumitru, F. Constantin, Effect of fractional order and magnetic field on the blood flow in cylindrical domains, J. Magn. and Magn. Mat. 409(2016)10 - 19.
Google Scholar
[27]
F. Ali, N. A. Sheikh, I. Khan, M. Saqib, Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, Magn, Magn, Mater.,423(2017)327 – 336.
DOI: 10.1016/j.jmmm.2016.09.125
Google Scholar
[28]
D.G. Yakubu, M. Abdulhameed, G. T. Adamu, A. M. Kwami, A study of fractional relaxation time on blood flow in arteries with magnetic radiation effects, Diff. Found. 26 (2020) 126 – 144.
DOI: 10.4028/www.scientific.net/df.26.126
Google Scholar
[29]
M. Caputo, Linear model of dissipation whose Q is almost frequency independent, Geophys. J. R. Astron Soc. 13(1967) 529- 539.
DOI: 10.1111/j.1365-246x.1967.tb02303.x
Google Scholar
[30]
D. Baleanu, O. Agrawal, Hamilton formalism within Caputo's derivative, C. J. Phys.56, (10-11) (2000)1087- 1092.
DOI: 10.1007/s10582-006-0406-x
Google Scholar
[31]
Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178(2) (2006)527 – 533.
DOI: 10.1016/j.amc.2005.11.072
Google Scholar
[32]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.
Google Scholar
[33]
H. Stehfests, "Algorithm 368: Numerical inversion of Laplace transform [D5]," Cmmun ACM, 13(1970) 47 – 49.
DOI: 10.1145/361953.361969
Google Scholar
[34]
H. Stehfest, "Remark on algorithm368: Numerical inversion of Laplace transforms," Commun. ACM, 13 (1970)624-625.
DOI: 10.1145/355598.362787
Google Scholar
[35]
B. Tashtoush, A. Magableh, Magnetic field effect on heat transfer and fluid flow characteristics of blood flow in multi-stenosis arteries, Heat Mass Transf. 44, (2008) 297 – 304.
DOI: 10.1007/s00231-007-0251-x
Google Scholar