The Effects of Fractional Relaxation Time and Magnetic Field on Blood Flow through Arteries along with Nanoparticles

Article Preview

Abstract:

In this paper, we report the effects of fractional relaxation time on the parameters of blood flow together with magnetic particles through straight circular cylindrical arterial segment. A mathematical model of blood flow subject to pulsatile pressure gradient in the axial direction with external magnetic field applied normal to the direction of flow is presented. Combining the momentum equation together with the Maxwell model parameter appropriately, leads to the governing fractional partial differential equation which permits to obtain the velocity profile of blood along with magnetic particles. By adopting the non-dimensionalized form of the new version of the governing fractional partial differential equation allowed us to obtain the dimensionless relaxation time parameter λ1 which controls blood flow conditions. Solving the fractional partial differential equations using Laplace and finite Hankel transforms we found that the influence of the order of Caputo's fractional time-derivative and fractional relaxation time on the blood flow parameters with magnetic particles are enormous. The graphical results plotted of different influential parameters are presented and discussed in details. The velocities of blood flow and that of magnetic particles are reduced under the influence of the external magnetic field and the relaxation time parameter. The magnetic particles are assumed to be uniformly distributed within the blood, since they are flowing in the same axial direction designated by along a circular cylindrical coordinates of radius. This is a very good indication that blood velocity can be controlled by the application of external magnetic field as well as the relaxation time parameter during treatment to avoid tissues damage. The present study has important applications in magnetic field control of biotechnological processes, bio magnetic device technology, biomedical engineering and pathology. Keywords: Arterial segment, Blood flow, Relaxation time, Magnetic field, Magnetic particles

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-76

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Thomas, K. S. Sumam, Blood flow in human arterial system-A review, Proc. Tech. 24(2016) 339 – 346.

DOI: 10.1016/j.protcy.2016.05.045

Google Scholar

[2] F. Yilmaz, M. Y. Gundogdu, A critical review on the blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Koreo-Australia Rheolog J. 20 (4) (2008)197 – 211.

Google Scholar

[3] A. Ogulu, A.R. Bestman, Deep heat muscle treatment –a mathematical model 1, Acta Phys. Hung. 73(1) (1993) 3 – 16.

DOI: 10.1007/bf03054177

Google Scholar

[4] A. Ogulu, E. Amos, Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform magnetic field and time-dependent suction, Int. Commun. Heat. Mass. Transf. 34 (2007)989 - 995.

DOI: 10.1016/j.icheatmasstransfer.2007.05.012

Google Scholar

[5] F. Ali, S. Yousaf, I. Khan, N. A. Sheikh, A new idea of Atangana-Baleanu time fractional derivatives to blood flow with magnetics particles in a circular cylinder: Two phase flow model, J. Magn. Magn. Mater. 486(2019)165282.

DOI: 10.1016/j.jmmm.2019.165282

Google Scholar

[6] S. Maiti, S. Shaw, G.C. Shit, Caputo-Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation, Physica A, Stat. Mech. Applic. 540(2020) 123149.

DOI: 10.1016/j.physa.2019.123149

Google Scholar

[7] V.K. Sud, H. E. Von Gierke, I. Kaeps H. L. Oestreicher, Blood flow under the influence of externally applied periodic acceleration in large and small arteries, J. Med. Biom. Eng.Comput. 21 (1983) 446 – 452.

DOI: 10.1007/bf02442632

Google Scholar

[8] V.K. Sud, G. S. Sekhon, Arterial flow under periodic body acceleration. Bull. Math. Bio. 47(1) (1985) 35 – 52.

DOI: 10.1016/s0092-8240(85)90004-7

Google Scholar

[9] V.K. Sud, G. S. Sekhon, Analysis of blood flow through a model of the human arterial system under periodic body acceleration, J. Biomed. 19 (1986) 929 – 941.

DOI: 10.1016/0021-9290(86)90188-0

Google Scholar

[10] G. C. Shit, S. Maiti, M. Roy, J. C Misra, Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study, J. Math. Comp. Simul. 166(2019)432 – 450.

DOI: 10.1016/j.matcom.2019.06.015

Google Scholar

[11] S. Chakravarty, A. Kr. Sannigrahi, A non-linear mathematical model of blood flow in a constricted artery experiencing body acceleration, J. Math. Comp. model. 29(1999) 9 – 25.

DOI: 10.1016/s0895-7177(99)00067-9

Google Scholar

[12] K. P. Kumar, W. Paul, C. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility, Process Biochem.46 (10) (2011) 2007–2013.

DOI: 10.1016/j.procbio.2011.07.011

Google Scholar

[13] T. Sochi, Non-Newtonian rheology in blood circulation, University College London, Department of Physics & Astronomy, Gower Street, London, WC1E 6BT, 2014. arXiv: 1306.2067 [physics.flu-dyn]

DOI: 10.3934/ipi.2014.8.811

Google Scholar

[14] S. U. Siddiqui, S. R. Shah, Geeta, A biomechanical approach to study the effect of body acceleration and slip velocity through stenotic artery, J. Appl. Math. Comp. 261(2015) 148 – 155.

DOI: 10.1016/j.amc.2015.03.082

Google Scholar

[15] R.R. Burton, S.D. Levercott Jr., E. D. Micaelsow, "Man of high sustained +G Acceleration: A Review," Aerospace Med. 46 (1974) 1251 – 1253.

Google Scholar

[16] S. Sharma, U. Singh, V. K. Katiyar, Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube, J. Magn. Magn. Mat. 377(2015)395- 401.

DOI: 10.1016/j.jmmm.2014.10.136

Google Scholar

[17] S. Majee, G. C. Shit, Numerical investigation of MHD flow of blood and heat transfer enhancement in arterial segment, J. Magn. Magn. Mat. 424(2017)137 – 147.

DOI: 10.1016/j.jmmm.2016.10.028

Google Scholar

[18] G. C. Shit, S. Majee, Computational modeling of MHD flow of blood and heat transfer enhancement in a slowly varying arterial segment, Intern. J. Heat and Fluid Flow. 70(2018)237 – 246.

DOI: 10.1016/j.ijheatfluidflow.2018.02.016

Google Scholar

[19] N.A. Shah, X. Wang, H. Qi, S. Wang, A. Hajizadeh, Transient electro-osmotic slip flow of an Oldroyd-B fluid with time-fractional Caputo-Fabrizio derivative, J. Appl. Comput. Mech. 5(4) (2019)779 - 790.

Google Scholar

[20] M. Abdulhameed, D. Vieru, R. Roslan, Modelling electro-magneto-hydrodynamic thermos-fluidic transport of biofluids with new trend of fractional derivative without singular kernel, Physica A, Stat. Mech. Applic. 484(2017) 233 -252.

DOI: 10.1016/j.physa.2017.05.001

Google Scholar

[21] G.T. Adamu, A. M. Kwami, M. Abdulhameed, D.G. Yakubu, Effects of retardation time on non-Newtonian electro-osmotic flow in a micro-channel, Diff. Found. 26 (2020) 39 – 53.

DOI: 10.4028/www.scientific.net/df.26.39

Google Scholar

[22] M. Abdulhameed, D. Vieru, R. Roslan, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Farizio derivatives through circular tudes, Comput. Math. Applic. 74 (10) (2017) 2503 – 2519.

DOI: 10.1016/j.camwa.2017.07.040

Google Scholar

[23] L. Yaqing, L. Zheng, X. Zhang, Unsteady MHD Couette flow of generalized Oldroyd-B fluid with fractional derivative, J Comput. Math. Applic. 61(2011) 443 – 450.

DOI: 10.1016/j.camwa.2010.11.021

Google Scholar

[24] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc, New York, 1993.

Google Scholar

[25] C. D. K. Bansi, C. B. Tabi, T. G. Motsumi, A. Mohamadou, Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magn. Magn. Mat. 456(2018)38-45.

DOI: 10.1016/j.jmmm.2018.01.079

Google Scholar

[26] N.A. Shah, V. Dumitru, F. Constantin, Effect of fractional order and magnetic field on the blood flow in cylindrical domains, J. Magn. and Magn. Mat. 409(2016)10 - 19.

Google Scholar

[27] F. Ali, N. A. Sheikh, I. Khan, M. Saqib, Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, Magn, Magn, Mater.,423(2017)327 – 336.

DOI: 10.1016/j.jmmm.2016.09.125

Google Scholar

[28] D.G. Yakubu, M. Abdulhameed, G. T. Adamu, A. M. Kwami, A study of fractional relaxation time on blood flow in arteries with magnetic radiation effects, Diff. Found. 26 (2020) 126 – 144.

DOI: 10.4028/www.scientific.net/df.26.126

Google Scholar

[29] M. Caputo, Linear model of dissipation whose Q is almost frequency independent, Geophys. J. R. Astron Soc. 13(1967) 529- 539.

DOI: 10.1111/j.1365-246x.1967.tb02303.x

Google Scholar

[30] D. Baleanu, O. Agrawal, Hamilton formalism within Caputo's derivative, C. J. Phys.56, (10-11) (2000)1087- 1092.

DOI: 10.1007/s10582-006-0406-x

Google Scholar

[31] Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178(2) (2006)527 – 533.

DOI: 10.1016/j.amc.2005.11.072

Google Scholar

[32] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006.

Google Scholar

[33] H. Stehfests, "Algorithm 368: Numerical inversion of Laplace transform [D5]," Cmmun ACM, 13(1970) 47 – 49.

DOI: 10.1145/361953.361969

Google Scholar

[34] H. Stehfest, "Remark on algorithm368: Numerical inversion of Laplace transforms," Commun. ACM, 13 (1970)624-625.

DOI: 10.1145/355598.362787

Google Scholar

[35] B. Tashtoush, A. Magableh, Magnetic field effect on heat transfer and fluid flow characteristics of blood flow in multi-stenosis arteries, Heat Mass Transf. 44, (2008) 297 – 304.

DOI: 10.1007/s00231-007-0251-x

Google Scholar