[1]
A. Zeeshan, A. Riaz, F. Alzahrani, Electroosmosis-modulated bio-flow of nanofluid through a rectangular peristaltic pump induced by complex traveling wave with zeta potential and heat source, Electrophoresis J. 42(21 - 22) (2021) 2143 –2153.
DOI: 10.1002/elps.202100098
Google Scholar
[2]
A. Zeeshan, F. Bashir, F. Alzahrani, Electro-osmosis-modulated biologically inspired flow of solid–liquid suspension in a channel with complex progressive wave: application of targeted drugging, Canadian J. Phy.,100(3) (2021).
DOI: 10.1139/cjp-2021-0199
Google Scholar
[3]
M. Abdulhameed, D. Vieru, R. Roslan, Modelling electro-magneto-hydrodynamic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A.Stat. Mech. Appli., 484 (2017) 233 – 252.
DOI: 10.1016/j.physa.2017.05.001
Google Scholar
[4]
J. Escandón, E. Jiménez, C. Hernández, O. Bautista, F. Méndez, Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials. European Journal of Mechanics-B/Fluids, 53 (2015) 180-189.
DOI: 10.1016/j.euromechflu.2015.05.001
Google Scholar
[5]
A. Zeeshan, A., Riaz, F. Alzahrani, A. Moqeet, Flow Analysis of Two-Layer Nano/Johnson–Segalman Fluid in a Blood Vessel-like Tube with Complex Peristaltic Wave, Hindawi, Math. Prob. Eng. (2022), 5289401.
DOI: 10.1155/2022/5289401
Google Scholar
[6]
A. Riaz, S. Nadeem, R. Ellahi, A. Zeeshan, Exact solution for peristaltic flow of Jeffrey flow model in a three dimensional rectangular duct having slip at the walls, Appl. Bionics Biomech. 11(2014) 81 – 90.
DOI: 10.1155/2014/901313
Google Scholar
[7]
V. Hanumesh, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complait wall and variable liquid properties, J. Braz. Soc. Mech. Sci. Eng., (2019)41:52.
DOI: 10.1007/s40430-018-1543-4
Google Scholar
[8]
M. Peralta, J. Arcos, F. Méndez, O. Bautista, Mass transfer through a concentric-annulus microchannel driven by an oscillatory electroosmotic flow of a Maxwell fluid, J. non-Newtonian Fluid Mechanics,279(2020)104281.
DOI: 10.1016/j.jnnfm.2020.104281
Google Scholar
[9]
S. Nadeem, A. Riaz, R. Ellali, N. S. Akbar, Series solution of unsteady peristaltic flow of a Carreau fluid in accentric cylinders, Ain Shams Eng. J. 5(1) (2013)293 – 304.
DOI: 10.1016/j.asej.2013.09.005
Google Scholar
[10]
A. Ali, M. Tahir, R. Safdar, A. U. Awan, M. Imran, M. Javaid, Magnetohydrodynamic oscillating and rotating flows of Maxwell electrically conducting fluids in a porous plane, Punjab Uni. J. Math., 50 (4) (2018)61 – 71.
Google Scholar
[11]
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modelling biological phenomana: A review. Communications in Nonlinear Science and Numerical Simulation, 51(2017) 141 – 159.
DOI: 10.1016/j.cnsns.2017.04.001
Google Scholar
[12]
D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional calculus in models and numerical methods. World Scientific Publishing Company, 2012.
DOI: 10.1142/8180
Google Scholar
[13]
J. Machado, V. Kiryakova, V. Mainardi, Recent history of fractional calculus. Commun. in Nonlinear Scie. and Numer. Simul., 16(3) (2011)4756-4767.
Google Scholar
[14]
J. Battaglia, O. Cois, L. Puigsegur, A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat and mass transfer, 44(2001) 2671- 2680.
DOI: 10.1016/s0017-9310(00)00310-0
Google Scholar
[15]
C. Hou, S. Gheorghiu, M. Coppens, V. Huxley, P. Pfeifer, Gas diffusion through the fractal landscape of the lung. Berlin, Birkhauser vol. IV of fractals in Biology and Medicine pp.17-30. Ed. Losa, Merlini, Nonnenmacher (2005).
DOI: 10.1007/3-7643-7412-8_2
Google Scholar
[16]
Y. Liu, L. Zheng, X. Zheng, Unsteady MHD Couette flow of generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61(2011) 443-450.
DOI: 10.1016/j.camwa.2010.11.021
Google Scholar
[17]
I. Podlubny, Fractional Differential equations. Academics Press, San Diego, 1999.
Google Scholar
[18]
C. F. Lorenzo, T. T. Hartley, Generalized Functions for the Fractional Calculus. NASA/TP. (1999) 2094424/REV1.
Google Scholar
[19]
Manuel, D., Ortigueira, J. A., M. Tenreiro, What is fractional derivative? Journal of Computational Physics 293(2015) 4-13.
Google Scholar
[20]
D. Vieru, Corina Fetecau, C. Fetacau, Flow of a viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comput.200 (2008) 459-464.
DOI: 10.1016/j.amc.2007.11.017
Google Scholar
[21]
C. Fetecau, M. Athar, C. Fetecau, Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate, Comput. Math. Appli. 57(2009) 596-603.
DOI: 10.1016/j.camwa.2008.09.052
Google Scholar
[22]
E.U. Haque, U.A. Aziz, R. Nauman, M. Abdullah, A.C. Maqbool, A Computational approach for the unsteady flow of Maxwell fluid with Caputo fractional derivative. Alexandria Engineering, J. 57(4) (2017) 2601 – 2608.
DOI: 10.1016/j.aej.2017.07.012
Google Scholar
[23]
C. D. K. Bansi, C. B. Tabi, T. G. Motsumi, A. Mohamadou, Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effect. J. Magn. Magn. Mater. 456(2018)38 – 45.
DOI: 10.1016/j.jmmm.2018.01.079
Google Scholar
[24]
D. G. Yakubu, M. Abdulhameed, G.T. Adamu, A. M. Kwami, A study of fractional relaxation time on blood flow in arteries with magnetic radiation effects. Diff. Found 26(2020) 126 – 144.
DOI: 10.4028/www.scientific.net/df.26.126
Google Scholar
[25]
D.G. Yakubu1, M. Abdulhameed A. G. Tahiru, R. Roslan, A. Issakhov, M. Rahimi-Gorji M. Bakouri, Towards the exact solutions of Burger's fluid flow through arteries with fractional time derivative magnetic field and thermal radiation effects, J. Proc. Mech. Eng. 235(5) (2021) 1618 – 1627.
DOI: 10.1177/09544089211013317
Google Scholar
[26]
Yang, C. Ng, C. B., V. Chan, Transient analysis of electroosmotic flow in a slit microchannel, J.Colloid and Inter. Scie., 248(2002): 524-527.
DOI: 10.1006/jcis.2002.8219
Google Scholar
[27]
X. Yang, H. Qi and X. Jiang, Numerical analysis of electroosmotic flow of fractional Maxwell fluids. J. Appli. Math. Lett 78 (2017)1 – 8.
Google Scholar
[28]
R.F. Probstein, Physicochemical hydrodynamics: An introduction, second edition. Wiley-Interscience, 2003.
Google Scholar
[29]
J.H. Masliyah, S. Bhattacharjee, Electrokinetic and colloid transport phenomena, Wiley-Interscience, 2006.
Google Scholar
[30]
R. Ellahi1, A. Riaz, S. Nadeem, Three dimensional peristaltic flow of Williamson fluid in a rectangular duct, Indian J. Phys., 87 (12) (2013)1275 – 1281.
DOI: 10.1007/s12648-013-0340-2
Google Scholar
[31]
R. Ellahi, A. Riaz, S. Nadeem, Three-dimensional peristaltic flow of a Williamson fluid in a rectangular channel having compliant walls, J. Mech. Med. Biol., 14(1) (2014)1450002.
DOI: 10.1142/s021951941450002x
Google Scholar