The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative

Article Preview

Abstract:

In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-98

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zeeshan, A. Riaz, F. Alzahrani, Electroosmosis-modulated bio-flow of nanofluid through a rectangular peristaltic pump induced by complex traveling wave with zeta potential and heat source, Electrophoresis J. 42(21 - 22) (2021) 2143 –2153.

DOI: 10.1002/elps.202100098

Google Scholar

[2] A. Zeeshan, F. Bashir, F. Alzahrani, Electro-osmosis-modulated biologically inspired flow of solid–liquid suspension in a channel with complex progressive wave: application of targeted drugging, Canadian J. Phy.,100(3) (2021).

DOI: 10.1139/cjp-2021-0199

Google Scholar

[3] M. Abdulhameed, D. Vieru, R. Roslan, Modelling electro-magneto-hydrodynamic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A.Stat. Mech. Appli., 484 (2017) 233 – 252.

DOI: 10.1016/j.physa.2017.05.001

Google Scholar

[4] J. Escandón, E. Jiménez, C. Hernández, O. Bautista, F. Méndez, Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials. European Journal of Mechanics-B/Fluids, 53 (2015) 180-189.

DOI: 10.1016/j.euromechflu.2015.05.001

Google Scholar

[5] A. Zeeshan, A., Riaz, F. Alzahrani, A. Moqeet, Flow Analysis of Two-Layer Nano/Johnson–Segalman Fluid in a Blood Vessel-like Tube with Complex Peristaltic Wave, Hindawi, Math. Prob. Eng. (2022), 5289401.

DOI: 10.1155/2022/5289401

Google Scholar

[6] A. Riaz, S. Nadeem, R. Ellahi, A. Zeeshan, Exact solution for peristaltic flow of Jeffrey flow model in a three dimensional rectangular duct having slip at the walls, Appl. Bionics Biomech. 11(2014) 81 – 90.

DOI: 10.1155/2014/901313

Google Scholar

[7] V. Hanumesh, C. Rajashekhar, G. Manjunatha, K. V. Prasad, Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complait wall and variable liquid properties, J. Braz. Soc. Mech. Sci. Eng., (2019)41:52.

DOI: 10.1007/s40430-018-1543-4

Google Scholar

[8] M. Peralta, J. Arcos, F. Méndez, O. Bautista, Mass transfer through a concentric-annulus microchannel driven by an oscillatory electroosmotic flow of a Maxwell fluid, J. non-Newtonian Fluid Mechanics,279(2020)104281.

DOI: 10.1016/j.jnnfm.2020.104281

Google Scholar

[9] S. Nadeem, A. Riaz, R. Ellali, N. S. Akbar, Series solution of unsteady peristaltic flow of a Carreau fluid in accentric cylinders, Ain Shams Eng. J. 5(1) (2013)293 – 304.

DOI: 10.1016/j.asej.2013.09.005

Google Scholar

[10] A. Ali, M. Tahir, R. Safdar, A. U. Awan, M. Imran, M. Javaid, Magnetohydrodynamic oscillating and rotating flows of Maxwell electrically conducting fluids in a porous plane, Punjab Uni. J. Math., 50 (4) (2018)61 – 71.

Google Scholar

[11] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modelling biological phenomana: A review. Communications in Nonlinear Science and Numerical Simulation, 51(2017) 141 – 159.

DOI: 10.1016/j.cnsns.2017.04.001

Google Scholar

[12] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional calculus in models and numerical methods. World Scientific Publishing Company, 2012.

DOI: 10.1142/8180

Google Scholar

[13] J. Machado, V. Kiryakova, V. Mainardi, Recent history of fractional calculus. Commun. in Nonlinear Scie. and Numer. Simul., 16(3) (2011)4756-4767.

Google Scholar

[14] J. Battaglia, O. Cois, L. Puigsegur, A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat and mass transfer, 44(2001) 2671- 2680.

DOI: 10.1016/s0017-9310(00)00310-0

Google Scholar

[15] C. Hou, S. Gheorghiu, M. Coppens, V. Huxley, P. Pfeifer, Gas diffusion through the fractal landscape of the lung. Berlin, Birkhauser vol. IV of fractals in Biology and Medicine pp.17-30. Ed. Losa, Merlini, Nonnenmacher (2005).

DOI: 10.1007/3-7643-7412-8_2

Google Scholar

[16] Y. Liu, L. Zheng, X. Zheng, Unsteady MHD Couette flow of generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61(2011) 443-450.

DOI: 10.1016/j.camwa.2010.11.021

Google Scholar

[17] I. Podlubny, Fractional Differential equations. Academics Press, San Diego, 1999.

Google Scholar

[18] C. F. Lorenzo, T. T. Hartley, Generalized Functions for the Fractional Calculus. NASA/TP. (1999) 2094424/REV1.

Google Scholar

[19] Manuel, D., Ortigueira, J. A., M. Tenreiro, What is fractional derivative? Journal of Computational Physics 293(2015) 4-13.

Google Scholar

[20] D. Vieru, Corina Fetecau, C. Fetacau, Flow of a viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comput.200 (2008) 459-464.

DOI: 10.1016/j.amc.2007.11.017

Google Scholar

[21] C. Fetecau, M. Athar, C. Fetecau, Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate, Comput. Math. Appli. 57(2009) 596-603.

DOI: 10.1016/j.camwa.2008.09.052

Google Scholar

[22] E.U. Haque, U.A. Aziz, R. Nauman, M. Abdullah, A.C. Maqbool, A Computational approach for the unsteady flow of Maxwell fluid with Caputo fractional derivative. Alexandria Engineering, J. 57(4) (2017) 2601 – 2608.

DOI: 10.1016/j.aej.2017.07.012

Google Scholar

[23] C. D. K. Bansi, C. B. Tabi, T. G. Motsumi, A. Mohamadou, Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effect. J. Magn. Magn. Mater. 456(2018)38 – 45.

DOI: 10.1016/j.jmmm.2018.01.079

Google Scholar

[24] D. G. Yakubu, M. Abdulhameed, G.T. Adamu, A. M. Kwami, A study of fractional relaxation time on blood flow in arteries with magnetic radiation effects. Diff. Found 26(2020) 126 – 144.

DOI: 10.4028/www.scientific.net/df.26.126

Google Scholar

[25] D.G. Yakubu1, M. Abdulhameed A. G. Tahiru, R. Roslan, A. Issakhov, M. Rahimi-Gorji M. Bakouri, Towards the exact solutions of Burger's fluid flow through arteries with fractional time derivative magnetic field and thermal radiation effects, J. Proc. Mech. Eng. 235(5) (2021) 1618 – 1627.

DOI: 10.1177/09544089211013317

Google Scholar

[26] Yang, C. Ng, C. B., V. Chan, Transient analysis of electroosmotic flow in a slit microchannel, J.Colloid and Inter. Scie., 248(2002): 524-527.

DOI: 10.1006/jcis.2002.8219

Google Scholar

[27] X. Yang, H. Qi and X. Jiang, Numerical analysis of electroosmotic flow of fractional Maxwell fluids. J. Appli. Math. Lett 78 (2017)1 – 8.

Google Scholar

[28] R.F. Probstein, Physicochemical hydrodynamics: An introduction, second edition. Wiley-Interscience, 2003.

Google Scholar

[29] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and colloid transport phenomena, Wiley-Interscience, 2006.

Google Scholar

[30] R. Ellahi1, A. Riaz, S. Nadeem, Three dimensional peristaltic flow of Williamson fluid in a rectangular duct, Indian J. Phys., 87 (12) (2013)1275 – 1281.

DOI: 10.1007/s12648-013-0340-2

Google Scholar

[31] R. Ellahi, A. Riaz, S. Nadeem, Three-dimensional peristaltic flow of a Williamson fluid in a rectangular channel having compliant walls, J. Mech. Med. Biol., 14(1) (2014)1450002.

DOI: 10.1142/s021951941450002x

Google Scholar