[1]
R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Wiley, New York, 1987.
Google Scholar
[2]
R.G. Larson, Constitutive equations for polymer melts and solutions, Butterworths, Boston, 1988.
Google Scholar
[3]
C. W. Macosko, Rheology: Principles, measurements and applications, VCH Publishers, New York, 1994.
Google Scholar
[4]
T. Chinyoka, O.D. Makinde, Viscoelastic modeling of the diffusion of polymeric pollutants injected into a pipe flow, Acta Mechanica Sinica, 29(2), 2013, 166-178.
DOI: 10.1007/s10409-013-0016-3
Google Scholar
[5]
M. Hütter, C. Luap, H.C. Öttinger, Energy Elastic Effects and the Concept of Temperature in Flowing Polymeric Liquids, Rheol. Acta, 48 (2009) 301-316.
DOI: 10.1007/s00397-008-0318-8
Google Scholar
[6]
R. Nahme, Beitrage zur hydrodynamischenTheorie der Laggerreibung, Ing.-Arch., 11 (1940) 191-1940.
Google Scholar
[7]
K.J. Laidler, The development of the Arrhenuis equation, J. Chem. Educ., 4 (1984) 494-498.
Google Scholar
[8]
F. Habla, A. Woitalka, S. Neuner, O. Hinrichsen, Development of a methodology for numerical simulation of non-isothermal viscoelastic fluid flows with application to axisymmetric 4: 1 contraction flows, Chem. Eng. J., 207 (2012) 772-784.
DOI: 10.1016/j.cej.2012.07.060
Google Scholar
[9]
S. Meburger, M. Niethammer, D. Bothe, M. Schäfer, Validation of Viscoelastic, non-isothermal fluid flow simulations, Annual Transactions of the Nordic Rheology Society, 27 (2019) 109-113.
Google Scholar
[10]
S. Meburger, M. Niethammer, D. Bothe, M. Schäfer, Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes, J. Non-Newton Fluid Mech., 287 (2021) 104-451.
DOI: 10.1016/j.jnnfm.2020.104451
Google Scholar
[11]
T. Chinyoka, Viscoelastic effects in double-pipe single-pass counterflow heat ex-changers, Int. J. Numer. Methods Fluids, 59 (2008) 667-690.
DOI: 10.1002/fld.1839
Google Scholar
[12]
T. Chinyoka, Modeling of cross-flow heat exchangers with viscoelastic fluids, Nonlinear Anal. Real World Appl., 10 (2009) 3353-3359.
DOI: 10.1016/j.nonrwa.2008.10.069
Google Scholar
[13]
T. Chinyoka, Effects of Fluid Viscoelasticity in Non-Isothermal Flows. In: A. Ahsan (Editor); Evaporation, Condensation and Heat transfer, London: IntechOpen; 2011, https://www.intechopen.com/chapters/19424
DOI: 10.5772/21299
Google Scholar
[14]
F. Pimenta, M.A. Alves, Conjugate heat transfer in the unbounded flow of a viscoelastic fluid past a sphere, Int. J. Heat Fluid Flow, 89 (2021) 108784.
DOI: 10.1016/j.ijheatfluidflow.2021.108784
Google Scholar
[15]
N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. NonNewton Fluid Mech., 2 (1977) 353-365.
DOI: 10.1016/0377-0257(77)80021-9
Google Scholar
[16]
F. Pimenta, M.A. Alves, rheoTool (2016), https://github.com/fppimenta/rheoTool.
Google Scholar
[17]
J.L. Favero, 2009 Viscoelastic flow simulation in openfoam: presentation of the viscoelasticfluidfoam solver Technical Report, Universidade Federal do Rio Grande do Sul-Department of Chemical Engineering (http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/slides/viscoelasticFluidFoam.pdf)[18] J.L. Favero, A.R. Secchi, N.S.M. Cardozo, H. Jasak, Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations, J. Non-Newton Fluid Mech., 165 (2010) 1625-1636.
DOI: 10.1016/j.jnnfm.2010.08.010
Google Scholar
[19]
R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the con-formation tensor, J. Non-Newtonian Fluid Mech., 123 (2004) 281-285.
DOI: 10.1016/j.jnnfm.2004.08.008
Google Scholar
[20]
R. Fattal, R. Kupferman, Finite element methods for calculation of steafy viscoealstic flow using constitutive equation with a Newtonian viscosity, J. Non-Newtonian Fluid Mech., 36 (1990) 159- 192
DOI: 10.1016/0377-0257(90)85008-m
Google Scholar
[21]
D. Rajagopalan , R.C. Armstrong, R.A. Brown, Constitutive laws for the matrix-logarithm of the con-formation tensor, J. Non-Newtonian Fluid Mech., 123 (2004) 281-285.
DOI: 10.1016/j.jnnfm.2004.08.008
Google Scholar
[22]
M.A. Alves, P.J. Oliveira, F.T. Pinho, A convergent and universally bounded inter-polation scheme for the treatment of advection, Int. J. Numer. Meth. Fluids, 41(2003) 47-75.
DOI: 10.1002/fld.428
Google Scholar
[23]
A.R. Muniz, A.R. Secchi, N.S.M. Cardozo, High-order finite volume method for solving viscoelastic fluid lows, Braz. J. Chem. Eng., 25 (2008) 53-58.
DOI: 10.1590/s0104-66322008000100016
Google Scholar
[24]
M.G.N. Perera, K. Walters, Long-range memory effects in flows involving abrupt changes in geometry, J. Non-Newtonian Fluid Mech., 2 (1977) 49-81.
DOI: 10.1016/0377-0257(77)80032-3
Google Scholar
[25]
D. Rajagopalan, R.C. Armstrong, R.A. Brown, Finite element methods for calculation of steady, viscoelastic flow using constitutive equations with Newtownian viscosity, J. Non-Newtonian Fluid Mech., 36 (1990) 159-192.
DOI: 10.1016/0377-0257(90)85008-m
Google Scholar
[26]
R. Guénette, M. Fortin, A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech., 60 (1995) 27-52.
DOI: 10.1016/0377-0257(95)01372-3
Google Scholar
[27]
J. Sun, N. Phan-Thien, R.I. Tanner, An adaptive viscoelastic stress splitting scheme and its applications: AV SS/SIandAV SS/SUPG, J. Non-Newtonian Fluid Mech., 65 (1996) 75-91.
DOI: 10.1016/0377-0257(96)01448-6
Google Scholar
[28]
H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques, Comput. Phys., 12 (1998) 620-631.
DOI: 10.1063/1.168744
Google Scholar
[29]
N. Afgan, M. Carvalho, A. Bar-Cohen, D. Butterworth, W. Roetzel, editors, Butterworth D. Developments in shell-and-tube heat exchangers. In New Developments in Heat Exchangers, Gordon and Breach, New York, 1996 (4) 437-47.
Google Scholar
[30]
E.A.D. Saunders, Heat Exchangers: Selection, Design and Construction, Wiley, New York, 1988.
Google Scholar
[31]
G. Walker, Industrial Heat Exchangers: A Basic Guide (2nd edn), Hemisphere Publishing, Washington, DC, 1990.
Google Scholar
[32]
T. Chinyoka, O.D. Makinde, On transient flow of a reactive variable viscosity third-grade fluid through a cylindrical pipe with convective cooling, Meccanica 47, 2012, 667-685.
DOI: 10.1007/s11012-011-9476-3
Google Scholar
[33]
T. Chinyoka, O.D. Makinde, A.S. Eegunjobi, Numerical investigation of entropy generation in an unsteady flow through a porous pipe with suction, International Journal of Exergy, 12(3), 2013, 279-297.[34] J.G. Abuga, T. Chinyoka, Benchmark solutions of the stabilized computations of flows of fluids governed by the Rolie-Poly constitutive model, Journal of Physics Communications, 4(1), 2020, 015024.
DOI: 10.1088/2399-6528/ab6ed2
Google Scholar
[35]
J.G. Abuga, T. Chinyoka, Numerical Study of Shear Banding in Flows of Fluids Governed by the Rolie-Poly Two-Fluid Model via Stabilized Finite Volume Methods, Processes 8(7), 2020, 810.
DOI: 10.3390/pr8070810
Google Scholar
[36]
Z. Nyandeni, T. Chinyoka, Computational aeroacoustic modeling using hybrid Reynolds averaged Navier-Stokes/large�eddy simulations methods with modified acoustic analogies, International Journal for Numerical Methods in Fluids, 93, 2021, 2611-2636.
DOI: 10.1002/fld.4990
Google Scholar
[37]
A. Mavi, Computational analysis of viscoelastic fluid dynamics with applications to heat exchangers, Master's thesis, University of Cape Town, 2019.
Google Scholar
[38]
W. Roetzel, X. Luo, D. Chen, Dynamic analysis of heat exchangers and their networks, in: Design and Operation of Heat Exchangers and their Networks, Academic Press, Editor(s): W. Roetzel, X. Luo, D. Chen, 2020, 319-390.
DOI: 10.1016/b978-0-12-817894-2.00007-8
Google Scholar
[39]
W. Roetzel, X. Luo, D. Chen, Optimal design of heat exchanger networks, in: Design and Operation of Heat Exchangers and their Networks, Academic Press, Editor(s): W. Roetzel, X. Luo, D. Chen, 2020, 231-317.
DOI: 10.1016/b978-0-12-817894-2.00006-6
Google Scholar
[40]
W. Roetzel, X. Luo, D. Chen, Basic thermal design theory for heat exchangers, in: Design and Operation of Heat Exchangers and their Networks, Academic Press, Editor(s): W. Roetzel, X. Luo, D. Chen, 2020, 13-69.
DOI: 10.1016/b978-0-12-817894-2.00002-9
Google Scholar
[41]
C. Balaji, Balaji Srinivasan, Sateesh Gedupudi, Heat exchangers, in: Heat Transfer Engineering, Academic Press, Editor(s): C. Balaji, Balaji Srinivasan, Sateesh Gedupudi, 2021, 199-231.
DOI: 10.1016/b978-0-12-818503-2.00007-1
Google Scholar
[42]
, S. Chand, M. Subhani, P. Sravani, The Systematic Comparision on Analysis of Parallel Flow and Counter Flow Heat Exchanger by using CFD and Practicle Methods, International Journal for Modern Trends in Science and Technology, 7, 2021, 153-161.
Google Scholar
[43]
M. Faizan, A. Almerbati, Evolutionary Design of Compact Counterflow Heat Exchanger, SSRN Electronic Journal, 2022
DOI: 10.2139/ssrn.4085355
Google Scholar
[44]
S. Alaqel, N.S. Saleh, R. Saeed, E. Djajadiwinata, M. Sarfraz, A. Alswaiyd, H. Al-Ansary, O. Zeitoun, S. Danish, Z. Al-Suhaibani, A. El-Leathy, S. Jeter, A. Khayyat, Particle-to-fluid directcontact counter-flow heat exchanger: Simple-models validation and integration with a particlebased central tower system, Case Studies in Thermal Engineering, 33, 2022, 101994.
DOI: 10.1016/j.csite.2022.101994
Google Scholar
[45]
M.A. Hulsen, P. Wapperom, P.P.M. van der Zanden, A numerical method for steady and nonisothermal viscoelastic fluid flow for high deborah and pclet numbers, Rheol. Acta, 37 (1998)73- 88.
DOI: 10.1007/s003970050093
Google Scholar
[46]
J.R. Clermont, A. Wachs, A. Khalifeh, Computations of nonisothermal viscous and viscoelastic flows in abrupt contractions using a finite volume method, Eng. Comput., 19 (2002) 874-901.
DOI: 10.1108/02644400210450332
Google Scholar
[47]
R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J Comp Phys, 62 (1986) 40-65.[48] X. Chen, H. Marschall, M. Schäfer, and D. Bothe, A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow, Int. J. Comput. Fluid Dyn., 27 (2013) 229-250.
DOI: 10.1080/10618562.2013.829916
Google Scholar
[49]
L.J. Amoreira, P.J. Oliveira, Comparison of Different Formulations for the Numerical Calculation of Unsteady Incompressible Viscoelastic Fluid Flow, adv. appl. math. mech., 27 (2010) 483-502.
DOI: 10.4208/aamm.10-m1010
Google Scholar