Studying the Oscillating Flow around Unconfined Obstacle of Elliptical Cross-Section

Article Preview

Abstract:

The present paper focuses on the effect of geometric shape of a cylindrical body submerged in an oscillating flow by means of numerical investigations. The cylindrical body has an elliptic cross-section with a variation of its elliptic ratio (ratio between major and minor axes of the elliptic section). The flow direction is oriented along the major axis. Three regimes from (Tatstuno and Bearman) maps are studied namely, a symmetric regime A and two other asymmetric regimes D and F. The flow field structures, the Morison coefficients of longitudinal forces and the root mean square (r.m.s.) of transverse forces are computed with respect to the elliptic ratio variation. For the case of cylinders with slightly elliptic cross-section, vortices and pressure fields are very similar to those of a circular cylinder. For the case of regime A, the vortex shedding is always symmetric despite the unbreakable variation of the elliptic ratio. On the other hand, the reduction of the elliptic ratio weakens the asymmetry of the flow for regimes D and F. Moreover, the flow in each regime becomes completely symmetric at a given value of the elliptic ratio. In fact, the predicted longitudinal component of the force acting on the cylinder decreases with the reduction of this ratio. This results in the same manner on the behavior of Morison coefficients. With regard to the symmetric regime A, the transverse force does not manifest itself for all considered ratios. On the other hand, the transverse force in the case of asymmetric regimes decreases rapidly with increasing the ellipticity of the cylinder. The present study showed us that the inertia coefficient is sensitive to the vortex path; however, the drag coefficient is independent of the vortex path. Both coefficients depend simultaneously on Reynolds number and the geometric shape of the body.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-141

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. H. K. Williamson, Sinusoidal Flow Relative to Circular Cylinders, J. Fluid Mech., 155 (1985) 141-174.

DOI: 10.1017/s0022112085001756

Google Scholar

[2] M. Tatsuno, P. W. Bearman, A Virtual Study of the Flow around an Oscillating Circular Cylinder at Low Keulegan-Carpenter Numbers and Low Stokes Numbers, J. Fluid Mech., 211 (1990) 157-182.

DOI: 10.1017/s0022112090001537

Google Scholar

[3] G. H. Keulegan, L. H. Carpenter, Forces on Cylinders and Plates in an Oscillating Fluid, J. Res. Natl. Bur. Stand., 60 (1958) 423-440.

DOI: 10.6028/jres.060.043

Google Scholar

[4] G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Trans. Cambridge Philos. Soc., 9 (1851) 8-106.

Google Scholar

[5] T. Sarpkaya, Experiments on the Stability of Sinusoïdal Flow Over a Circular Cylinder, J. Fluid Mech., 457 (2002) 157-180.

DOI: 10.1017/s002211200200784x

Google Scholar

[6] H. Honji, Streaked Flow around an Oscillating Cylinder, J. Fluid Mech., 107 (1981) 509-520.

DOI: 10.1017/s0022112081001894

Google Scholar

[7] W. Zheng, C. Dalton, Numerical prediction of force on rectangular cylinders in oscillating viscous flow, J Fluids Struct., 13 (1999) 225–249.

DOI: 10.1006/jfls.1998.0201

Google Scholar

[8] H. An, L. Cheng, M. Zhao, Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number, J. Fluid Mech., 666 (2011) 77–103.

DOI: 10.1017/s0022112010003691

Google Scholar

[9] P. Suthon, C. Dalton, Streakline visualization of the structures in the near wake of a circular cylinder in sinusoidally oscillating flow, J. Fluids Struct. 27 (2011) 885–902.

DOI: 10.1016/j.jfluidstructs.2011.03.003

Google Scholar

[10] P. Suthon, C. Dalton, Observations on the Honji instability. J. Fluids Struct. 32 (2012) 27–36.

DOI: 10.1016/j.jfluidstructs.2011.12.008

Google Scholar

[11] P. Hall, On the stability of unsteady boundary layer on a circular cylinder oscillating transversely in a viscous fluid," J. Fluid Mech., 146 (1984) 347-367.

DOI: 10.1017/s0022112084001907

Google Scholar

[12] T. Sarpkaya, Forces on a circular cylinder in viscous oscillatory flow at low Keulegan-carpenter, J. Fluid Mech., 165 (1986) 61-71.

DOI: 10.1017/s0022112086002999

Google Scholar

[13] T. Sarpkaya, Experiments on the Stability of Sinusoïdal Flow Over a Circular Cylinder, J. Fluid Mech., 457 (2002) 157-180.

DOI: 10.1017/s002211200200784x

Google Scholar

[14] C.H.K. Williamson, The natural and forced formation of spot-like vortex dislocations in the transition wake, J. Fluid Mech., 243 (1992) 393-441.

DOI: 10.1017/s0022112092002763

Google Scholar

[15] D. Nehari, V. Armenio, F. Ballio, Three-dimensional analysis of the unidirectional oscillatory flow around a circular cylinder at low Keulegan-Carpenter and Β numbers, J. Fluid Mech., 520 (2004) 157-186.

DOI: 10.1017/s002211200400134x

Google Scholar

[16] G. Iliadis, P. Anagnostopoulos, Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and frequency parameters, Intl J. Numer. Meth. Fluids. , 26 (1998) 403–442.

DOI: 10.1002/(sici)1097-0363(19980228)26:4<403::aid-fld640>3.0.co;2-v

Google Scholar

[17] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Low Reynolds number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers, J. Fluid Mech., 360 (1998) 249-271.

DOI: 10.1017/s002211209800860x

Google Scholar

[18] B. Uzunoglu, M. Tan, W. G. Price, Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method, Int. J. Numer. Methods Eng., 50 (2001) 2317-2338.

DOI: 10.1002/nme.122

Google Scholar

[19] J. R. Elston, H. M. Blackburn, J. Sheridan, The primary and secondary instabilities of flow generated by an oscillating circular cylinder, J. Fluid Mech., 550 (2006) 359–389.

DOI: 10.1017/s0022112005008372

Google Scholar

[20] P. Scandura, V. Armenio, E. Foti, Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan–Carpenter and low Reynolds numbers, J. Fluid Mech., 627 (2009) 259–290.

DOI: 10.1017/s0022112009006016

Google Scholar

[21] H. An, L. Cheng, M. Zhao, Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder, J. Oceanic Eng., 109 (2015) 270–286.

DOI: 10.1016/j.oceaneng.2015.09.013

Google Scholar

[22] A.N. Nuriev, A.G. Egorov, O.N.  Zaitseva, Numerical analysis of secondary flows around an oscillating cylinder. J. Appl. Mech. Tech. Phys., 59 (2018) 451–459.

DOI: 10.1134/s0021894418030082

Google Scholar

[23] J. R. Morison, M. P. O'Brien, J. W. Johnson, S. A. Schaff, The Force Exerted by Surface Waves on Piles, Petroleum Trans. AIME, 189 (1950) 149-154.

DOI: 10.2118/950149-g

Google Scholar

[24] P. Justesen, A Numerical Study of Oscillating Flow around a Circular Cylinder, J. Fluid Mech., 222, (1991) 157-196.

DOI: 10.1017/s0022112091001040

Google Scholar

[25] J. R. Chaplin, Hydrodynamic damping of a cylinder. Journal of Fluids Structures, 14 (2000) 1101–1117.

DOI: 10.1006/jfls.2000.0318

Google Scholar

[26] T. Sarpkaya, Hydrodynamic damping and quasi-coherent structures at large Stokes number, Journal of Fluids Structures, 15 (2001) 909–928.

DOI: 10.1006/jfls.2001.0384

Google Scholar

[27] P. W. Bearman, J. M. R. Graham, E. D. Obasaju, G. M. Drossopoulos, The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow," Appl. Ocean Res., 6 (1984) 83-89.

DOI: 10.1016/0141-1187(84)90045-2

Google Scholar

[28] C. Chu-Chang, F. Fuh-Min, L. Yi-Chao, H. Long-Ming, C. Cheng-Yang, Fluid forces on a square cylinder in oscillating flows with Non-zero-mean velocities, Int. J. Numer. Meth. Fluids, 60 (2009) 79-93.

DOI: 10.1002/fld.1881

Google Scholar

[29] D. Sumner , H. B. Hemingson, D. M. Deutscher, J. E. Barth, PIV measurements of the flow around oscillating cylinders at low KC numbers. IUTAM Symposium on Unsteady Separated Flows and Their Control. 2009.

DOI: 10.1007/978-1-4020-9898-7_1

Google Scholar

[30] B. J. Davidson, N. Riley, Jets Induced by Oscillatory Motion, J. Fluid Mech., 53 (1972) 287-303.

DOI: 10.1017/s0022112072000163

Google Scholar

[31] S. Taneda, Visual study of unsteady separated flows around bodies, Prog. Aerospace Sci., 17 (1977) 287-348.

DOI: 10.1016/0376-0421(76)90011-7

Google Scholar

[32] N. Gus'kuva, Yu., G. V. Makhortykh, M. G. Shcheglova, Inertia and Drag of Elliptic Cylinders Oscillating in a Fluid, Fluid Dyn., 33 (1998) 91-95.

DOI: 10.1007/bf02698165

Google Scholar

[33] H. M. Badr, A Oscillating inviscid flow over elliptic cylinders with flat plates and circular cylinders as special cases. Ocean Engineering, 21 (1994) 105-113.

DOI: 10.1016/0029-8018(94)90033-7

Google Scholar

[34] H. M. Badr, Oscillating viscous flow over an inclined elliptic cylinder, Ocean Engineering 21 (1994), 401-426.

DOI: 10.1016/0029-8018(94)90012-4

Google Scholar

[35] N. Riley, M. F. Wybrow, The flow induced by the torsional oscillations of an elliptic cylinder, Journal of Fluid Mechanics, 290 (1995) 279-298.

DOI: 10.1017/s0022112095002515

Google Scholar

[36] H.M. Badr, S. Kocabiyik, Symmetrically Oscillating Viscous Flow Over an Elliptic Cylinder, J. Fluid Str., 11 (1997) 745-766.

DOI: 10.1006/jfls.1997.0100

Google Scholar

[37] K.Yang, L. Cheng, H. An, A.P. Bassom, M. Zhao, Effects of an axial flow component on the Honji instability, J. Fluids Struct. 49 (2014) 614–639.

DOI: 10.1016/j.jfluidstructs.2014.06.003

Google Scholar

[38] S. Daoud, D. Nehari, M. Aichouni, T. Nehari, Numerical simulations of an oscillating flow past an elliptic cylinder, Trans. ASME: J. Offshore Mech. Arctic Engng., 138 (2015 ) 011802.

DOI: 10.1115/1.4031926

Google Scholar

[39] J.P. Gallardo, H.I. Andersson, B. Pettersen,  Three-dimensional instabilities in oscillatory flow past elliptic cylinders, J. Fluid Mech., 798 (2016) 371–397.

DOI: 10.1017/jfm.2016.319

Google Scholar

[40] H. Laouira, F. Mebarek-Oudina, A. K. Hussein, L. Kolsi, A. Merah, Y. Obai, Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths, Heat Transfer, 49(2020) 406–423.

DOI: 10.1002/htj.21618

Google Scholar

[41] M. Farhan, Z. Omar, F. Mebarek-Oudina, J. Raza, Z. Shah, R. V. Choudhari, O. D. Makinde, Computational Mathematics and Modeling, 31(2020) 116–132.

DOI: 10.1007/s10598-020-09480-0

Google Scholar

[42] F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engineering Science and Technology, an International Journal 20 (2017) 1324-1333.

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar

[43] I. Chabani, F. Mebarek-Oudina, A. Aziz, I. Ismail, MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle, Micromachines, 13 (2022) 224.

DOI: 10.3390/mi13020224

Google Scholar

[44] M. Helmaoui, H. Laidoudi, A. Belbachir, A. Ayad, A. Ghaniam, Forced convection heat transfer from a pair of circular cylinders confined in ventilated enclosure, Diffusion Foundations, 26(2020) 104-111.

DOI: 10.4028/www.scientific.net/df.26.104

Google Scholar

[45] H. Laidoudi, M. Helmaoui, B. Azeddine, A. Ayad, A. Ghenaim, Effects of inlet and outlet ports of ventilated square cavity on flow and heat transfer, Diffusion Foundations 26(2020) 78-85.

DOI: 10.4028/www.scientific.net/df.26.78

Google Scholar

[46] R.L. Sorenson, A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson's equations, NASA TM 81198, NASA Ames Research Center, 1980.

Google Scholar