[1]
C. H. K. Williamson, Sinusoidal Flow Relative to Circular Cylinders, J. Fluid Mech., 155 (1985) 141-174.
DOI: 10.1017/s0022112085001756
Google Scholar
[2]
M. Tatsuno, P. W. Bearman, A Virtual Study of the Flow around an Oscillating Circular Cylinder at Low Keulegan-Carpenter Numbers and Low Stokes Numbers, J. Fluid Mech., 211 (1990) 157-182.
DOI: 10.1017/s0022112090001537
Google Scholar
[3]
G. H. Keulegan, L. H. Carpenter, Forces on Cylinders and Plates in an Oscillating Fluid, J. Res. Natl. Bur. Stand., 60 (1958) 423-440.
DOI: 10.6028/jres.060.043
Google Scholar
[4]
G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Trans. Cambridge Philos. Soc., 9 (1851) 8-106.
Google Scholar
[5]
T. Sarpkaya, Experiments on the Stability of Sinusoïdal Flow Over a Circular Cylinder, J. Fluid Mech., 457 (2002) 157-180.
DOI: 10.1017/s002211200200784x
Google Scholar
[6]
H. Honji, Streaked Flow around an Oscillating Cylinder, J. Fluid Mech., 107 (1981) 509-520.
DOI: 10.1017/s0022112081001894
Google Scholar
[7]
W. Zheng, C. Dalton, Numerical prediction of force on rectangular cylinders in oscillating viscous flow, J Fluids Struct., 13 (1999) 225–249.
DOI: 10.1006/jfls.1998.0201
Google Scholar
[8]
H. An, L. Cheng, M. Zhao, Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number, J. Fluid Mech., 666 (2011) 77–103.
DOI: 10.1017/s0022112010003691
Google Scholar
[9]
P. Suthon, C. Dalton, Streakline visualization of the structures in the near wake of a circular cylinder in sinusoidally oscillating flow, J. Fluids Struct. 27 (2011) 885–902.
DOI: 10.1016/j.jfluidstructs.2011.03.003
Google Scholar
[10]
P. Suthon, C. Dalton, Observations on the Honji instability. J. Fluids Struct. 32 (2012) 27–36.
DOI: 10.1016/j.jfluidstructs.2011.12.008
Google Scholar
[11]
P. Hall, On the stability of unsteady boundary layer on a circular cylinder oscillating transversely in a viscous fluid," J. Fluid Mech., 146 (1984) 347-367.
DOI: 10.1017/s0022112084001907
Google Scholar
[12]
T. Sarpkaya, Forces on a circular cylinder in viscous oscillatory flow at low Keulegan-carpenter, J. Fluid Mech., 165 (1986) 61-71.
DOI: 10.1017/s0022112086002999
Google Scholar
[13]
T. Sarpkaya, Experiments on the Stability of Sinusoïdal Flow Over a Circular Cylinder, J. Fluid Mech., 457 (2002) 157-180.
DOI: 10.1017/s002211200200784x
Google Scholar
[14]
C.H.K. Williamson, The natural and forced formation of spot-like vortex dislocations in the transition wake, J. Fluid Mech., 243 (1992) 393-441.
DOI: 10.1017/s0022112092002763
Google Scholar
[15]
D. Nehari, V. Armenio, F. Ballio, Three-dimensional analysis of the unidirectional oscillatory flow around a circular cylinder at low Keulegan-Carpenter and Β numbers, J. Fluid Mech., 520 (2004) 157-186.
DOI: 10.1017/s002211200400134x
Google Scholar
[16]
G. Iliadis, P. Anagnostopoulos, Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and frequency parameters, Intl J. Numer. Meth. Fluids. , 26 (1998) 403–442.
DOI: 10.1002/(sici)1097-0363(19980228)26:4<403::aid-fld640>3.0.co;2-v
Google Scholar
[17]
H. Dutsch, F. Durst, S. Becker, H. Lienhart, Low Reynolds number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers, J. Fluid Mech., 360 (1998) 249-271.
DOI: 10.1017/s002211209800860x
Google Scholar
[18]
B. Uzunoglu, M. Tan, W. G. Price, Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method, Int. J. Numer. Methods Eng., 50 (2001) 2317-2338.
DOI: 10.1002/nme.122
Google Scholar
[19]
J. R. Elston, H. M. Blackburn, J. Sheridan, The primary and secondary instabilities of flow generated by an oscillating circular cylinder, J. Fluid Mech., 550 (2006) 359–389.
DOI: 10.1017/s0022112005008372
Google Scholar
[20]
P. Scandura, V. Armenio, E. Foti, Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan–Carpenter and low Reynolds numbers, J. Fluid Mech., 627 (2009) 259–290.
DOI: 10.1017/s0022112009006016
Google Scholar
[21]
H. An, L. Cheng, M. Zhao, Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder, J. Oceanic Eng., 109 (2015) 270–286.
DOI: 10.1016/j.oceaneng.2015.09.013
Google Scholar
[22]
A.N. Nuriev, A.G. Egorov, O.N. Zaitseva, Numerical analysis of secondary flows around an oscillating cylinder. J. Appl. Mech. Tech. Phys., 59 (2018) 451–459.
DOI: 10.1134/s0021894418030082
Google Scholar
[23]
J. R. Morison, M. P. O'Brien, J. W. Johnson, S. A. Schaff, The Force Exerted by Surface Waves on Piles, Petroleum Trans. AIME, 189 (1950) 149-154.
DOI: 10.2118/950149-g
Google Scholar
[24]
P. Justesen, A Numerical Study of Oscillating Flow around a Circular Cylinder, J. Fluid Mech., 222, (1991) 157-196.
DOI: 10.1017/s0022112091001040
Google Scholar
[25]
J. R. Chaplin, Hydrodynamic damping of a cylinder. Journal of Fluids Structures, 14 (2000) 1101–1117.
DOI: 10.1006/jfls.2000.0318
Google Scholar
[26]
T. Sarpkaya, Hydrodynamic damping and quasi-coherent structures at large Stokes number, Journal of Fluids Structures, 15 (2001) 909–928.
DOI: 10.1006/jfls.2001.0384
Google Scholar
[27]
P. W. Bearman, J. M. R. Graham, E. D. Obasaju, G. M. Drossopoulos, The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow," Appl. Ocean Res., 6 (1984) 83-89.
DOI: 10.1016/0141-1187(84)90045-2
Google Scholar
[28]
C. Chu-Chang, F. Fuh-Min, L. Yi-Chao, H. Long-Ming, C. Cheng-Yang, Fluid forces on a square cylinder in oscillating flows with Non-zero-mean velocities, Int. J. Numer. Meth. Fluids, 60 (2009) 79-93.
DOI: 10.1002/fld.1881
Google Scholar
[29]
D. Sumner , H. B. Hemingson, D. M. Deutscher, J. E. Barth, PIV measurements of the flow around oscillating cylinders at low KC numbers. IUTAM Symposium on Unsteady Separated Flows and Their Control. 2009.
DOI: 10.1007/978-1-4020-9898-7_1
Google Scholar
[30]
B. J. Davidson, N. Riley, Jets Induced by Oscillatory Motion, J. Fluid Mech., 53 (1972) 287-303.
DOI: 10.1017/s0022112072000163
Google Scholar
[31]
S. Taneda, Visual study of unsteady separated flows around bodies, Prog. Aerospace Sci., 17 (1977) 287-348.
DOI: 10.1016/0376-0421(76)90011-7
Google Scholar
[32]
N. Gus'kuva, Yu., G. V. Makhortykh, M. G. Shcheglova, Inertia and Drag of Elliptic Cylinders Oscillating in a Fluid, Fluid Dyn., 33 (1998) 91-95.
DOI: 10.1007/bf02698165
Google Scholar
[33]
H. M. Badr, A Oscillating inviscid flow over elliptic cylinders with flat plates and circular cylinders as special cases. Ocean Engineering, 21 (1994) 105-113.
DOI: 10.1016/0029-8018(94)90033-7
Google Scholar
[34]
H. M. Badr, Oscillating viscous flow over an inclined elliptic cylinder, Ocean Engineering 21 (1994), 401-426.
DOI: 10.1016/0029-8018(94)90012-4
Google Scholar
[35]
N. Riley, M. F. Wybrow, The flow induced by the torsional oscillations of an elliptic cylinder, Journal of Fluid Mechanics, 290 (1995) 279-298.
DOI: 10.1017/s0022112095002515
Google Scholar
[36]
H.M. Badr, S. Kocabiyik, Symmetrically Oscillating Viscous Flow Over an Elliptic Cylinder, J. Fluid Str., 11 (1997) 745-766.
DOI: 10.1006/jfls.1997.0100
Google Scholar
[37]
K.Yang, L. Cheng, H. An, A.P. Bassom, M. Zhao, Effects of an axial flow component on the Honji instability, J. Fluids Struct. 49 (2014) 614–639.
DOI: 10.1016/j.jfluidstructs.2014.06.003
Google Scholar
[38]
S. Daoud, D. Nehari, M. Aichouni, T. Nehari, Numerical simulations of an oscillating flow past an elliptic cylinder, Trans. ASME: J. Offshore Mech. Arctic Engng., 138 (2015 ) 011802.
DOI: 10.1115/1.4031926
Google Scholar
[39]
J.P. Gallardo, H.I. Andersson, B. Pettersen, Three-dimensional instabilities in oscillatory flow past elliptic cylinders, J. Fluid Mech., 798 (2016) 371–397.
DOI: 10.1017/jfm.2016.319
Google Scholar
[40]
H. Laouira, F. Mebarek-Oudina, A. K. Hussein, L. Kolsi, A. Merah, Y. Obai, Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths, Heat Transfer, 49(2020) 406–423.
DOI: 10.1002/htj.21618
Google Scholar
[41]
M. Farhan, Z. Omar, F. Mebarek-Oudina, J. Raza, Z. Shah, R. V. Choudhari, O. D. Makinde, Computational Mathematics and Modeling, 31(2020) 116–132.
DOI: 10.1007/s10598-020-09480-0
Google Scholar
[42]
F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engineering Science and Technology, an International Journal 20 (2017) 1324-1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[43]
I. Chabani, F. Mebarek-Oudina, A. Aziz, I. Ismail, MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle, Micromachines, 13 (2022) 224.
DOI: 10.3390/mi13020224
Google Scholar
[44]
M. Helmaoui, H. Laidoudi, A. Belbachir, A. Ayad, A. Ghaniam, Forced convection heat transfer from a pair of circular cylinders confined in ventilated enclosure, Diffusion Foundations, 26(2020) 104-111.
DOI: 10.4028/www.scientific.net/df.26.104
Google Scholar
[45]
H. Laidoudi, M. Helmaoui, B. Azeddine, A. Ayad, A. Ghenaim, Effects of inlet and outlet ports of ventilated square cavity on flow and heat transfer, Diffusion Foundations 26(2020) 78-85.
DOI: 10.4028/www.scientific.net/df.26.78
Google Scholar
[46]
R.L. Sorenson, A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson's equations, NASA TM 81198, NASA Ames Research Center, 1980.
Google Scholar