Application of Strontium-Doped Bismuth Ferrate in Lithium-Sulfur Battery Cathode

Article Preview

Abstract:

The modification of high-performance lithium-sulfur battery cathode have been extensively studied. Suppressing the shuttle effect of polysulfide, solving the volume expansion of sulfur and the poor electrical conductivity of sulfur are the main directions for scientists to modify the cathode. Here we prepared bismuth ferrate powder doped with different molecular percentages of strontium by sol-gel method. Compared with the unmodified cell, the capacity and cycle stability were improved by adding as-prepared material to the cathode, which indicates that bismuth ferrate doped with certain amount of strontium plays a positive role in the cathode material modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-186

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ji, X.; Nazar, L. F., Advances in Li–S batteries. J. Mater. Chem. 20 (2010), 9821-9826.

Google Scholar

[2] Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J; Tarascon, J.M., Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11 (2012), 19-29.

DOI: 10.1038/nmat3191

Google Scholar

[3] Pope, M. A.; Aksay, I. A., Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 5 (2015), 1500124.

DOI: 10.1002/aenm.201500124

Google Scholar

[4] Liu, Y.; Wang, Y.; Ma, J.; Li, S.; Pan, H.; Nan, C. W.; Lin, Y. H., Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. (2022), 100943.

DOI: 10.1016/j.pmatsci.2022.100943

Google Scholar

[5] Tokunaga, M.; Akaki, M.; Ito, T.; Miyahara, S.; Miyake, A.; Kuwahara, H.; Furukawa, N., Magnetic control of transverse electric polarization in BiFeO3. Nat. Commun. 6 (2015), 1-5.

DOI: 10.1038/ncomms6878

Google Scholar

[6] Sun, B.; Mao, S.; Zhu, S.; Zhou, G.; Xia, Y.; Zhao, Y., Improved rate and cycling performances of electrodes based on BiFeO3 nanoflakes by compositing with organic pectin for advanced rechargeable Na-ion batteries. ACS Appl. Nano Mater. 1 (2018), 1291-1299.

DOI: 10.1021/acsanm.8b00011

Google Scholar

[7] Durai, L.; Moorthy, B.; Thomas, C. I.; Kim, D. K.; Bharathi, K. K., Electrochemical properties of BiFeO3 nanoparticles: anode material for sodium-ion battery application. Mater. Sci. Semicond. Process. 68 (2017),165-171.

DOI: 10.1016/j.mssp.2017.06.003

Google Scholar

[8] Hu, B.; Wang, J. F.; Zhang, J.; Gu, Z. B.; Zhang, S. T., Synthesis, structures and properties of single phase BiFeO3 and Bi2Fe4O9 powders by hydrothermal method. J. Mater. Sci. Mater. Electron. 26 (2015), 6887-6891.

DOI: 10.1007/s10854-015-3305-8

Google Scholar

[9] Kim, J.K.; Kim, S.S.; Kim. W.J., Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 59 (2005), 4006-4009.

DOI: 10.1016/j.matlet.2005.07.050

Google Scholar

[10] Zhang, T.; Shen, Y.; Qiu, Y.; Liu, Y.; Xiong, R.; Shi, J.; Wei, J., Facial synthesis and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers. ACS Sustain. Chem. Eng. 5 (2017), 4630-4636.

DOI: 10.1021/acssuschemeng.6b03138.s001

Google Scholar

[11] Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H., Fabricating better metal-organic frameworks separators for Li-S batteries: Pore sizes effects inspired channel modification strategy. Energy Stor. Mater. 25 (2020). 164-171.

DOI: 10.1016/j.ensm.2019.10.018

Google Scholar

[12] Hu, C.; Chen, H.; Xie, Y.; Fang, L.; Fang, J.; Xu, J.; Zhang, J., Alleviating polarization by designing ultrasmall Li 2 S nanocrystals encapsulated in N-rich carbon as a cathode material for high-capacity, long-life Li–S batteriesJ. Mater. Chem. A. 4 (2016) 18284-18288.

DOI: 10.1039/c6ta08572e

Google Scholar

[13] Demir-Cakan, R.; Morcrette, M.; Guéguen, A.; Dedryvère, R.; Tarascon, J. M., Li-S batteries: simple approaches for superior performance. Energy Environ. Sci. 6 (2013), 176-182.

DOI: 10.1039/c2ee23411d

Google Scholar