Quasi-Random Discrete Ordinates Method to Radiative Transfer Equation with Linear Anisotropic Scattering

Article Preview

Abstract:

The modeling of energy transport via radiative transfer is important to many practical high temperature engineering applications. Furthermore, the computation of solutions to the radiative transfer equation (RTE) plays a fundamental part in it. The quasi-random discrete ordinates method was developed as an alternative to mitigate the ray effect found in the classical discrete ordinates method solutions. The former method was originally developed for transport problems with isotropic scattering and it is here extended and tested to problems with linear anisotropic scattering. Its main idea is to approximate the integral term of the RTE by a quasi-Monte Carlo integration. The discrete system of differential equations arising from it can be solved by a variety of classical discretization methods, here computed with a SUPG finite element scheme. The novel developments are tested for selected manufactured solutions. The achieved good results indicate the potential of the novel method to be applied to the solution of radiative transfer problems with anisotropic scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-119

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Modest, Radiative Heat Transfer, third ed., Elsevier, New York, 2013.

Google Scholar

[2] M. Frank, M. Seaïd, A. Klar, R. Pinnau, G. Thömmes and J. Janicka, A comparison of approximate models for radiation in gas turbines, Prog. Comput. Fluid Dyn., 4 (2004) 191-197.

DOI: 10.1504/pcfd.2004.004087

Google Scholar

[3] E.W. Larsen, G. Thömmes, A. Klar, M. Seaïd and T. Götz, Simplified PN approximations to the equations of radiative heat transfer and applications, J. Comput. Phys., 183 (2002) 652-675.

DOI: 10.1006/jcph.2002.7210

Google Scholar

[4] R. Viskanta and M.P. Mengüç, Radiation heat transfer in combustion systems, Prog. Energy Combust., 13 (1987) 97-160.

Google Scholar

[5] E. Meinköhn and S. Richling, Radiative transfer with finite elements: II. Ly line transfer in moving media, Astron. Astrophys., 392 (2002) 827-839.

DOI: 10.1051/0004-6361:20020951

Google Scholar

[6] S. Richling, E. Meinköhn, N. Kryzhevoi and G. Kanschat, Radiative transfer with finite elements: I. Basic method and tests, Astron. Astrophys., 380 (2001) 776-788.

DOI: 10.1051/0004-6361:20011411

Google Scholar

[7] G.S. Abdoulaev and A.H. Hielscher, Three-dimensional optical tomography with the equation of radiative transfer, J. Electron. Imaging, 12 (2003) 594-601.

DOI: 10.1117/1.1587730

Google Scholar

[8] A.H. Hielscher, R.E. Alcouffe and R.L. Barbour, Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Phys. Med. Biol., 43 (1998) 1285-1302.

DOI: 10.1088/0031-9155/43/5/017

Google Scholar

[9] T. Tarvainen, M. Vauhkonen and S.R. Arridge, Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation, J. Quant. Spectrosc. Radiat. Transf., 109 (2008) 2767-2778.

DOI: 10.1016/j.jqsrt.2008.08.006

Google Scholar

[10] L.V. Wang, and H. Wu, Biomedical Optics: Principles and Imaging, first ed., John Wiley & Sons, Inc., New Jersey, 2007.

Google Scholar

[11] R.F. Knackfuss and L.B. Barichello, On the temperature-jump problem in rarefied gas dynamics: the effect of the Cercignani-Lampis boundary conditon, SIAM J. Appl. Math., 66 (2006) 2149- 2186.

DOI: 10.1137/050643209

Google Scholar

[12] E.E. Lewis, and W.F. Miller, Computational Methods of Neutron Transport, first ed., John Wiley & Sons, Inc., New York, 1984.

Google Scholar

[13] W.M. Stacey, Nuclear Reactor Physics, second ed., Wiley-VCH, Weinheim, 2007.

Google Scholar

[14] J.R. Howell, M.P. Mengüç, K. Daun and R. Siegel, Thermal Radiation Heat Transfer, seventh ed., CRC Press, Boca Raton, 2021.

Google Scholar

[15] J.C. Chai, H.S. Lee and S.V. Patankar, Ray effect and false scattering in the discrete ordinates method, Numer. Heat Transf. B: Fundam., 24 (1993) 373-389.

DOI: 10.1080/10407799308955899

Google Scholar

[16] J.E. Morel, T.A. Wareing, R.B. Lowrie and D.K. Parsons, Analysis of ray-effect mitigation techniques, Nucl. Sci. Eng., 144 (2003) 1-22.

Google Scholar

[17] H.-S. Li, G. Flamant and J.-D. Lu, Mitigation of ray effects in the discrete ordinates method, Numer. Heat Transf. B: Fundam., 43 (2003) 445-466.

DOI: 10.1080/713836241

Google Scholar

[18] L.K. Abu-Shumays, Angular quadratures for improved transport computations, Transp. Theory Stat. Phys., 30 (2001) 169-204.

DOI: 10.1081/tt-100105367

Google Scholar

[19] L.B. Barichello, A. Tres, C.B. Picoloto, Y.Y. Azmy, Recent studies on the asymptotic convergence of the spatial discretization for two-dimensional discrete ordinates solutions, J. Comput. Theor. Transp., 45 (2016) 299-313.

DOI: 10.1080/23324309.2016.1171242

Google Scholar

[20] B. Hunter and Z. Guo, Comparison of quadrature schemes in DOM for anisotropic scattering radiative transfer analysis, Numer. Heat Transf. B: Fundam., 63 (2013) 485-507.

DOI: 10.1080/10407790.2013.777644

Google Scholar

[21] R. Koch and R. Becker, Evaluation of quadrature schemes for the discrete ordinates method, J. Quant. Spectrosc. Radiat. Transf., 84 (2004) 423-435.

DOI: 10.1016/s0022-4073(03)00260-7

Google Scholar

[22] J.J. Jarrel, An Adaptive Angular Discretization Method for Neutral-Particle Transport in Three- Dimensional Geometries, Ph.D. thesis, Texas A&M University, 2010.

Google Scholar

[23] J.C. Stone, Adaptive Discrete-Ordinates Algorithms and Strategies, Ph.D. thesis, Texas A&M University, 2007.

Google Scholar

[24] J. Tencer, Ray Effect mitigation through reference frame rotation, J. Heat Transfer., 138 (2016) 112701-112712.

DOI: 10.1115/1.4033699

Google Scholar

[25] P.H.A. Konzen, L.F. Guidi and T. Richter, Quasi-random discrete ordinates method for neutron transport problems, Ann. Nucl. Energy, 133 (2019) 275-282.

DOI: 10.1016/j.anucene.2019.05.017

Google Scholar

[26] G. Leobacher, and F. Phillichshammer, Introduction to Quasi-Monte Carlo Integration and Applications, first ed., Birkhäuser, Heidelberg, 2014.

Google Scholar

[27] P.H.A. Konzen, L.F. Guidi and T. Richter, Quasi-random discrete ordinates method to radiative transfer equation with linear anisotropic scattering, in: Anais do Encontro Nacional de Modelagem Computacional, Encontro de Ciência e Tecnologia de Materiais, Conferência Sul em Modelagem Computacional e Seminário e Workshop em Engenharia Oceânica, UFPel/ FURG/UNIPAMPA, Pelotas, Brazil, 2022, available on https://www.even3.com.br/anais/enmcmcsulsemengo2022/ 534616-quasi-random-discrete-ordinates-method-to-radiative-transferequation- with-linear-anisotropic-scattering/

DOI: 10.29327/1142685

Google Scholar

[28] P.H.A. Konzen, L.F. Guidi and T. Richter, QRDOM's ray effect mitigation to particle transport problems with anisotropic scattering, in: Book of Abstracts of the LACIAM 2023, FGV, Rio de Janeiro, Brazil, 2023, p.155.

Google Scholar

[29] B. Vandewoestyne and R. Cools, Good permutations for deterministic scrambled Halton sequences in terms of L2-discrepancy, J. Comput. Appl. Math., 189 (2006) 341-361.

DOI: 10.1016/j.cam.2005.05.022

Google Scholar

[30] G. Kanschat, A robust finite element discretization for radiative transfer problems with scattering, East-West J. Numer. Math., 6 (1998) 265-272.

Google Scholar

[31] R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The Finite Element Toolkit Gascoigne 3D, 2021, available on (10.5281/zenodo.5574969) https://www.gascoigne.de

Google Scholar

[32] M.A. Badri, P. Jolivet, B. Rousseau and Y. Favennec, High performance computation of radiative transfer equation using the finite element method, J. Comput. Phys., 360 (2018) 74-92.

DOI: 10.1016/j.jcp.2018.01.027

Google Scholar

[33] D. Le Hardy, Y. Favennec, and B. Rousseau, Solution of the 2-D steady-state radiative transfer equation in participating media with specular reflections using SUPG and DG finite elements, J. Quant. Spectrosc. Radiat. Transf., 179 (2016) 149-164.

DOI: 10.1016/j.jqsrt.2016.03.027

Google Scholar