Maximizing Efficiency of Earth-Air Heat Exchangers with Galvanized Blocks

Article Preview

Abstract:

Earth-air heat exchangers (EAHE) consist of buried ducts and a ventilation system, which require minimal electricity, making them a cost-effective and sustainable solution for improving the thermal conditions of built environments. To enhance the efficiency of the EAHE system and optimize its use of the soil's thermal potential, we employed a galvanized block with a cross-sectional area of 1.5 m2 around the duct. The simulations conducted in this study used climatic data from Viamão, a city in southern Brazil, and demonstrated the effectiveness of this strategy. The galvanized block increased the thermal conductivity of the soil region and enabled the EAHE system to utilize higher quantities of thermal energy. The first part of the work highlights the importance of block coupling in improving thermal efficiency and the two potentials of EAHE systems. We also introduce a new method for calculating EAHE efficiency throughout the year. We name it maximum efficiency because it measures how much thermal potential an EAHE installation can extract from the highest amount available in the soil during the year. Subsequently, we conducted simulations of ducts at different depths to evaluate their performance. Our results showed that annual efficiencies increased significantly with the addition of the galvanized block. We also found how the installation depth impacts the thermal potentials. Specifically, we obtained almost 4.0°C and 3.8°C for the (annual RMS) soil and EAHE thermal potentials, respectively, at 3.5m.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.R.N. Pastor, Análise de desempenho de trocadores de calor solo-ar aletados, Dissertação de Mestrado, Programa de pós-graduação em Modelagem Matemática, Universidade Federal de Pelotas, Pelotas, Brasil, 2022.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar

[2] K.K. Agrawal, R. Misra, G.D. Agrawal, M. Bhardwaj, D.K. Jamuwa, The state of art on the applications, technology integration, and latest research trends of earth-air-heat exchanger system, Geothermics. 82 (2019) 34-50.

DOI: 10.1016/j.geothermics.2019.05.011

Google Scholar

[3] N. Bordoloi, A. Sharma, H. Nautiyal, V. Goel, An intense review on the latest advancements of earth air heat exchangers, Renew Sustain Energy Rev. 89 (2018) 261-280.

DOI: 10.1016/j.rser.2018.03.056

Google Scholar

[4] N. Soares, N. Rosa, H. Monteiro, J. Costa, Advances in standalone and hybrid earth-air heat exchanger (EAHE) systems for buildings: A review, Energy Build. 253:111532 (2021).

DOI: 10.1016/j.enbuild.2021.111532

Google Scholar

[5] Z. Liu, M. Xie, Y. Zhou, Y. He, L. Zhang, G. Zhang, et al, A state-of-the-art review on shallow geothermal ventilation systems with thermal performance enhancement system classifications, advanced technologies and applications, Energy Built Environ. 4 (2023) 148-168.

DOI: 10.1016/j.enbenv.2021.10.003

Google Scholar

[6] Ł. Amanowicz, K. Ratajczak, E. Dudkiewicz, Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review, Energies. 16 (2023) 1853.

DOI: 10.3390/en16041853

Google Scholar

[7] A.M.B. Domingues, E.S.B. Nóbrega, J.V.A. Ramalho, R.S. Brum, R.S. Quadros, Parameter analysis of Earth-air heat exchangers over multi-layered soils in South Brazil, Geothermics 93 (2021) 1-14.

DOI: 10.1016/j.geothermics.2021.102074

Google Scholar

[8] L-H. Yang, J-W. Hu, Y-C. Chiang, S-L. Chen, Performance analysis of building-integrated earth-air heat exchanger retrofitted with a supplementary water system for cooling-dominated climate in Taiwan, Energy Build. 242 (2021) 110949.

DOI: 10.1016/j.enbuild.2021.110949

Google Scholar

[9] H. Wei, D. Yang, J. Du, X. Guo, Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region, Renew Energy. 167 (2021) 530–41.

DOI: 10.1016/j.renene.2020.11.112

Google Scholar

[10] A. Mathur, S. Mathur, G.D. Agrawal, J. Mathur, Comparative study of straight and spiral earth air tunnel heat exchanger system operated in cooling and heating modes, Renew Energy. 108 (2017) 474–87.

DOI: 10.1016/j.renene.2017.03.001

Google Scholar

[11] B. Asgari, M. Habibi, A. Hakkaki-Fard, Assessment and comparison of different arrangements of horizontal ground heat exchangers for high energy required applications, Appl Therm Eng. 167 (2020) 1–12.

DOI: 10.1016/j.applthermaleng.2019.114770

Google Scholar

[12] A. Mathur, S. Kumar, Thermal performance and comfort assessment of U-shape and helical shape earth-air heat exchanger in India, Energy Built Environ. 3(2) (2022) 171–80.

DOI: 10.1016/j.enbenv.2021.01.002

Google Scholar

[13] H. Soroush, S. Entezari, E. Lakzian, Numerical investigation of serpentine earth-to-air heat exchanger for passive building heating systems by recovery criteria, Sustain. Energy Technol. Assess. 53 (2022) 102728.

DOI: 10.1016/j.seta.2022.102728

Google Scholar

[14] V. Goyal, A.K. Asati, A. Arora, An experimental and modeling study for a novel bank-type earth air heat exchanger for the summer season using full factorial design, ASME. J. Thermal Sci. Eng. Appl. 15 (2023) 021006.

DOI: 10.1115/1.4055968

Google Scholar

[15] R.S. Brum, J.V. Ramalho, M.K. Rodrigues, L.A. Rocha, L.A. Isoldi, E.D. Dos Santos, Design evaluation of earth-air heat exchangers with multiple ducts, Renew Energy. 135 (2019) 1371-1385.

DOI: 10.1016/j.renene.2018.09.063

Google Scholar

[16] M.K. Rodrigues, R.S. Brum, J. Vaz, L.A.O. Rocha, E.D. Santo, L.A. Isoldi, Numerical investigation about the improvement of the thermal potential of an earth-air heat exchanger (EAHE) employing the constructal design method, Renew Energy. 80 (2015) 538-551.

DOI: 10.1016/j.renene.2015.02.041

Google Scholar

[17] D. Qi, A. Li, S. Li, C. Zhao, Comparative analysis of earth to air heat exchanger configurations based on uniformity and thermal performance, Appl Therm Eng. 183 (2021) 116152.

DOI: 10.1016/j.applthermaleng.2020.116152

Google Scholar

[18] D. Qi, S. Li, C. Zhao, W. Xie, A. Li, Structural optimization of multi-pipe earth to air heat exchanger in greenhouse, Geothermics. 98 (2022) 102288.

DOI: 10.1016/j.geothermics.2021.102288

Google Scholar

[19] B.R. Nunes, M.K. Rodrigues, L.A.O. Rocha, M. Labat, S. Lorente, E.D. dos Santos, L.A. Isoldi, C. Biserni, Numerical-analytical study of earth-air heat exchangers with complex geometries guided by constructal design, Int. J. Energy Res. 45 (2021) 1-18.

DOI: 10.1002/er.7157

Google Scholar

[20] G.C. Rodrigues, G. Lorenzini, L.C. Victoria, I.S. Vaz, L.A.O. Rocha, E.D. dos Santos, M.K. Rodrigues, E.S.D. Estrada, L.A. Isoldi, Constructal design applied to the geometric evaluation of a T-shaped earth-air heat exchanger, Int. J. Sustainable Dev. Plann. 16 (2021) 207-217.

DOI: 10.18280/ijsdp.160201

Google Scholar

[21] M.K. Rodrigues, J. Vaz, L.A.O. Rocha, E.D. dos Santos, L.A. Isoldi, A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation, Renew. Energy 191 (2022) 535-556.

DOI: 10.1016/j.renene.2022.04.007

Google Scholar

[22] H. Li, L. Ni, Y. Yao, C. Sun, Experimental investigation on the cooling performance of an earth to air heat exchanger (EAHE) equipped with an irrigation system to adjust soil moisture, Energy Build. 196 (2019) 280–92.

DOI: 10.1016/j.enbuild.2019.05.007

Google Scholar

[23] Y. Gao, R. Fan, H. Li, R. Liu, X. Lin, H. Guo, et al., Thermal performance improvement of a horizontal ground-coupled heat exchanger by rainwater harvest, Energy Build. 110 (2016) 302–13.

DOI: 10.1016/j.enbuild.2015.10.030

Google Scholar

[24] Y. Belloufi, S. Zerouali, A. Rouag, F. Aissaoui, R. Atmani, A. Brima, N. Moummi, Transient assessment of an earth air heat exchanger in warm climatic conditions, Geothermics, 104 (2022), 102442.

DOI: 10.1016/j.geothermics.2022.102442

Google Scholar

[25] T. Zhou, Y. Xiao, Y. Liu, J. Lin, H. Huang, Research on cooling performance of phase change material-filled earth-air heat exchanger, Energy Convers. Manage. 177 (2018) 210–23.

DOI: 10.1016/j.enconman.2018.09.047

Google Scholar

[26] A.B. Platts, D.A. Cameron, J. Ward, Improving the performance of ground coupled heat exchangers in unsaturated soils, Energy Build. 104 (2015) 323–35.

DOI: 10.1016/j.enbuild.2015.04.050

Google Scholar

[27] J.V.A. Ramalho, H.J. Fernando, R.S. Brum, A.M.B. Domingues, N.R.N. Pastor, M.R.B. Olivera, Accessing the thermal performance of Earth–air heat exchangers surrounded by galvanized structures, Sustain. Energy Technol. Assess. 54 (2022) 102838.

DOI: 10.1016/j.seta.2022.102838

Google Scholar

[28] R. Hassanzadeh, M. Darvishyadegari, S. Arman, A new idea for improving the horizontal straight ground source heat exchangers performance, Sustain. Energy Technol. Assess. 25 (2018) 138-145.

DOI: 10.1016/j.seta.2017.12.006

Google Scholar

[29] J. Vaz, M.A. Sattler, E.D. Santos, L.A. Isoldi, Experimental and numerical analysis of an earth-air heat exchancher, Energy Build 43 (2011) 2476-2482.

DOI: 10.1016/j.enbuild.2011.06.003

Google Scholar

[30] St. Benkert, F.D. Heidt, D. Schöler, Calculation tool for earth heat exchangers GAEA, Proceedings Building Simulation, Fifth International - IBPSA Conference 2. (1997).

Google Scholar

[31] M.R.B. Olivera, Análise paramétrica de trocadores de calor solo-ar acoplados a estruturas galvanizadas, Dissertação de Mestrado, Programa de Pós-graduação em Modelagem Matemática, Universidade Federal de Pelotas, Pelotas, Brasil, 2022.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar

[32] R.S. Brum, J.V.A. Ramalho, L.A.O. Rocha, L.A. Isoldi, E.D. Santos, A Matlab code to fit periodic data, Revista Brasileira de Computação Aplicada 7 (2015) 16-25.

DOI: 10.5335/rbca.2015.4618

Google Scholar

[33] O. Ozgener, L. Ozgener, J.W. Tester, A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications, Int J Heat Mass Transfer, 62 (2013), 473-480.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.031

Google Scholar

[34] T.J.R. Hughes, The finite element method (Linear Static and Dynamic Finite Element Analysis), Prentice Hall, Inc., New Jersey, 1987.

Google Scholar

[35] M.N. Özisik, Heat Conduction, John Wiley & Sons, New York, 1993.

Google Scholar