[1]
C. Rombaldi, L.F.I. Farias, C.A. da Rosa, Modelagem e simulação de micromistura em cristalizador coaxial utilizando openfoam. In: Anais do XII Congresso Brasileiro de Engenharia Química em Iniciação Científica Blucher Chemical Engineering Proceedings, v. 1, n.4. São Paulo: Blucher, 2017.
DOI: 10.5151/chemeng-cobeqic2017-126
Google Scholar
[2]
J.W.W. Mullin, Crystallization, fourth edition. Elsevier Butterworth-Heineman, Oxford, 2001.
Google Scholar
[3]
L.F.I. Farias, Acoplamento dos modelos de balanço populacional e fluidodinâmica computacional e fluidodinâmica computacional para a simulação de escoamentos bifásicos com distribuição no tamanho de partículas utilizando o software OpenFOAM. Dissertação. Universidade Federal do Rio Grande – FURG, Programa de Pós-graduação em Engenharia Química, RioGrande/RS, 2017.
DOI: 10.18605/2175-7275/cereus.v10n2p12-25
Google Scholar
[4]
L.F.I. Farias, J.A. de Souza, R.D. Braatz, C.A. da Rosa, Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM, Computers & Chemical Engineering. 123 (2019) 246–256.
DOI: 10.1016/j.compchemeng.2019.01.009
Google Scholar
[5]
C.A. da Rosa, R.D. Braatz, openCrys: Open-Source Software for the Multiscale Modeling of Combined Antisolvent and Cooling Crystallization in Turbulent Flow, Industrial & Engineering Chemistry Research. (2018).
DOI: 10.1021/acs.iecr.8b01849
Google Scholar
[6]
R.O. Fox, Computational models for turbulent reacting flows. Cambridge University Press, Cambridge, U.K, 2003.
Google Scholar
[7]
D.L. Marchisio, R.O. Fox, A.A. Barresi, G. Baldi, On the Comparison between Presumed and Full PDF Methods for Turbulent Precipitation, Industrial & Engineering Chemistry Research. 40 (2001) 5132–5139.
DOI: 10.1021/ie0010262
Google Scholar
[8]
X.Y Woo, R.B.H. Tan, R.D Braatz, Modeling and Computational Fluid Dynamics−Population Balance Equation−Micromixing Simulation of Impinging Jet Crystallizers, Crystal Growth & Design, 9 (2009) 156–164.
DOI: 10.1021/cg800095z
Google Scholar
[9]
C. Pirkle, L.C. Foguth, S.J. Brenek, K. Girard, R.D. Braatz, Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles, Chemical Engineering and Processing: Process Intensification. 97 (2015) 213–232.
DOI: 10.1016/j.cep.2015.07.006
Google Scholar
[10]
A.D. Randoph, M.A. Larson, Theory of particulate processes, analysis and techniques of continuous crystallization, Academic Press, New York, 1971, p.251
DOI: 10.1002/aic.690180343
Google Scholar
[11]
M.W. Park, S.D Yeo, Antisolvent crystallization of carbamazepine from organic solutions, Chemical Engineering Research and Design, 90 (2012) 2202–2208.
DOI: 10.1016/j.cherd.2012.05.001
Google Scholar
[12]
C.A. da Rosa, R.D. Braatz, Multiscale Modeling and Simulation of Macromixing, Micromixing, and Crystal Size Distribution in Radial Mixers/Crystallizers, Industrial & Engineering Chemistry Research, 57 (2018) 5433–5441.
DOI: 10.1021/acs.iecr.8b00359
Google Scholar