Numerical Study of the Influence of the Geometric Parameters of a Radial Crystalizer Using a Multiscale CFD Model

Article Preview

Abstract:

This work investigates how the configuration of the geometric parameters of a radial crystallizer influences the results of the crystallization of lovastatin by antisolvent and using a multi-scale computational fluid dynamics (CFD) model. The OPENFOAM open-source software uses macro and micromixing expressions for flow, and complete energy and population equilibrium equations during nucleation and crystal growth. The model is based on the Reynolds-Averaged-Navier-Stokes (RANS) equation, along with a multi-environment probability density function (PDF) model and the spatially semi-discretized population equilibrium equation, operating a high-resolution finite volume method. The variation crystallizer construction parameters provided another crystallizer design, and analyses demonstrated improved performance and effects on crystal distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-59

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Rombaldi, L.F.I. Farias, C.A. da Rosa, Modelagem e simulação de micromistura em cristalizador coaxial utilizando openfoam. In: Anais do XII Congresso Brasileiro de Engenharia Química em Iniciação Científica Blucher Chemical Engineering Proceedings, v. 1, n.4. São Paulo: Blucher, 2017.

DOI: 10.5151/chemeng-cobeqic2017-126

Google Scholar

[2] J.W.W. Mullin, Crystallization, fourth edition. Elsevier Butterworth-Heineman, Oxford, 2001.

Google Scholar

[3] L.F.I. Farias, Acoplamento dos modelos de balanço populacional e fluidodinâmica computacional e fluidodinâmica computacional para a simulação de escoamentos bifásicos com distribuição no tamanho de partículas utilizando o software OpenFOAM. Dissertação. Universidade Federal do Rio Grande – FURG, Programa de Pós-graduação em Engenharia Química, RioGrande/RS, 2017.

DOI: 10.18605/2175-7275/cereus.v10n2p12-25

Google Scholar

[4] L.F.I. Farias, J.A. de Souza, R.D. Braatz, C.A. da Rosa, Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM, Computers & Chemical Engineering. 123 (2019) 246–256.

DOI: 10.1016/j.compchemeng.2019.01.009

Google Scholar

[5] C.A. da Rosa, R.D. Braatz, openCrys: Open-Source Software for the Multiscale Modeling of Combined Antisolvent and Cooling Crystallization in Turbulent Flow, Industrial & Engineering Chemistry Research. (2018).

DOI: 10.1021/acs.iecr.8b01849

Google Scholar

[6] R.O. Fox, Computational models for turbulent reacting flows. Cambridge University Press, Cambridge, U.K, 2003.

Google Scholar

[7] D.L. Marchisio, R.O. Fox, A.A. Barresi, G. Baldi, On the Comparison between Presumed and Full PDF Methods for Turbulent Precipitation, Industrial & Engineering Chemistry Research. 40 (2001) 5132–5139.

DOI: 10.1021/ie0010262

Google Scholar

[8] X.Y Woo, R.B.H. Tan, R.D Braatz, Modeling and Computational Fluid Dynamics−Population Balance Equation−Micromixing Simulation of Impinging Jet Crystallizers, Crystal Growth & Design, 9 (2009) 156–164.

DOI: 10.1021/cg800095z

Google Scholar

[9] C. Pirkle, L.C. Foguth, S.J. Brenek, K. Girard, R.D. Braatz, Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles, Chemical Engineering and Processing: Process Intensification. 97 (2015) 213–232.

DOI: 10.1016/j.cep.2015.07.006

Google Scholar

[10] A.D. Randoph, M.A. Larson, Theory of particulate processes, analysis and techniques of continuous crystallization, Academic Press, New York, 1971, p.251

DOI: 10.1002/aic.690180343

Google Scholar

[11] M.W. Park, S.D Yeo, Antisolvent crystallization of carbamazepine from organic solutions, Chemical Engineering Research and Design, 90 (2012) 2202–2208.

DOI: 10.1016/j.cherd.2012.05.001

Google Scholar

[12] C.A. da Rosa, R.D. Braatz, Multiscale Modeling and Simulation of Macromixing, Micromixing, and Crystal Size Distribution in Radial Mixers/Crystallizers, Industrial & Engineering Chemistry Research, 57 (2018) 5433–5441.

DOI: 10.1021/acs.iecr.8b00359

Google Scholar