Analysis under Uncertainty with the Monte Carlo Method Applied to a Bioheat Transfer Problem with Coupled Deep Brain Stimulation Lead

Article Preview

Abstract:

This article deals with an analysis of uncertainties applied to a bioheat transfer problem containing a deep brain stimulation lead. The classic two-dimensional bioheat transfer equation in cylindrical coordinates was considered in the mathematical formulation. The electric potential was solved with a Laplace equation to incorporate the DBS lead effects. Thus, the solution for the electric potential was coupled to the temperature problem, considering an external heat transfer rate. The analysis under uncertainties was performed by the Monte Carlo method considering different types of uncertainties for all parameters of the mathematical model. The uncertainties were chosen according to the information available in the literature in order to analyze the problem more realistically. The solutions showed a significant variation in the temperature profile over time when considering the random variations in the parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/deep-brain-stimulation.

Google Scholar

[2] D.J. Aum and T.S. Tierney, Deep brain stimulation: foundations and future trends, Front. Biosci. 23 (2018) 162-182.

DOI: 10.2741/4586

Google Scholar

[3] Y. Xiao, J.C. Lau, D. Hemachandra, G. Gilmore, A.R. Khan, and T.M. Peters, Image guidance in deep brain stimulation surgery to treat parkinson's disease: a comprehensive review, IEEE T. Bio-med. Eng. 68 (2020) 1024-1033.

DOI: 10.1109/tbme.2020.3006765

Google Scholar

[4] A. Macerollo, V. Sajin, M. Bonello, D. Barghava, S.H. Alusi, P.R. Eldridge, and J. Osman-Farah, Deep brain stimulation in dystonia: State of art and future directions, J. Neurosci. Meth. 340 (2020).

DOI: 10.1016/j.jneumeth.2020.108750

Google Scholar

[5] V. Salanova, Deep brain stimulation for epilepsy, Epilepsy Behav. 88 (2018) 21-24.

DOI: 10.1016/j.yebeh.2018.06.041

Google Scholar

[6] I.E. Hamsen, G.J. Elias, M.E. Beyn, A. Boutet, A. Pancholi, J. Germann, A. Mansouri, C.S. Lozano, and A.M. Lozano, Clinical trials for deep brain stimulation: current state of affairs, Brain Stimul. 13 (2020) 378-385.

DOI: 10.1016/j.brs.2019.11.008

Google Scholar

[7] J. Lam, J. Lee, C.Y. Liu, A.M. Lozano, and D.J. Lee, Deep brains stimulation for alzheimer's disease: tackling circuit dysfunction, Neuromodulation. 24 (2021) 171-186.

DOI: 10.1111/ner.13305

Google Scholar

[8] R. Cubo and A. Medvedev, Online tissue conductivity estimation in deep brain stimulation, IEEE T. Contr. Syst. T. 28 (2018) 149-162.

DOI: 10.1109/tcst.2018.2862397

Google Scholar

[9] L.C.S. Jardim, L.A.S. Abreu, D.C. Knupp, and A.J. da Silva Neto, Brain thermal and electrical properties estimation using experimental data from deep brain stimulation lead, Rev. Mundi Eng., Tecnol. Gest. 5 (2020).

DOI: 10.21575/25254782rmetg2020vol5n61349

Google Scholar

[10] J.K. Krauss, N. Lipsman, T. Aziz, A. Boutet, P. Brown, J.W. Chang, B. Davidson, W.M. Grill, M.I. Hariz, A. Horn, M. Schulder, A. Mammis, P.A. Tass, J. Volkmann, and A.M. Lozano, Technology of deep brain stimulation: current status and future directions, Nat. Rev. Neurol. 17 (2021) 75-87.

DOI: 10.1038/s41582-020-00426-z

Google Scholar

[11] C. McElcheran, L. Goestanirad, M. Iacono, P.P. Wei, B. Yang, K. Anderson, g. Bonmassar, and S. Graham, Numerical simulations of realistic lead trajectories and an experimental verification support the efficacy of parallel radiofrequency transmission to reduce heating of deep brain stimulation implants during MRI, Sci. Rep-uk. 9 (2019) 1-14.

DOI: 10.1038/s41598-018-38099-w

Google Scholar

[12] A. Boutet, C.T. Chow, K. Narang, G.J. Elias, C. Neudorfer, J. Germann, M. Renjan, A. Loh, A.J. Martin, W. Kucharczyk, C.J. Steele, I. Hancu, A.R. Rezai, and A.M. Lozano, Improving safety of MRI on patients with deep brain stimulation devices, Radiology. 296 (2020) 250-262.

DOI: 10.1148/radiol.2020192291

Google Scholar

[13] I.E. Harmsen, D.J. Lee, R.F. Dallapiazza, P. de Vloo, R. Chen, A. Fasano, S.K. Kalia, M. Hodaie, and A.M. Lozano, Ultrahigh frequency deep brain stimulation at 10 000 Hz improves motor function, Neurosurgery. 66 (2019) 310-367.

DOI: 10.1093/neuros/nyz310_367

Google Scholar

[14] N. Khadka, I.E. Harmsen, A.M. Lozano, and M. Bikson, Bio-heat model of kilohertz-frequency deep brain stimulation increases brain temperature, Neuromodulation. 23 (2020) 489-495.

DOI: 10.1111/ner.13120

Google Scholar

[15] L. Golestanirad, E. Kazamivalipour, D. Lampman, H. Habara, E. Atalar, J. Rosenow, J. Pilitsis, and J. Kirsch, RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configuration, Magn. Reson. Med. 83 (2020) 2284-2292.

DOI: 10.1002/mrm.28049

Google Scholar

[16] B. Davidson, F. Tam, B. Yang, Y. Meng, C. Hamani, S.J. Graham, and N. Lipsman, Three-tesla magnetic resonance imaging of patients with deep brain stimulators: results from a phantom study and a pilot study in patients, Neurosurgery. 88 (2021) 349-355.

DOI: 10.1093/neuros/nyaa439

Google Scholar

[17] M.M. Elwassif, Q. Kong, M. Vazquez, and M. Bikson, Bio-heat transfer model of deep brain stimulation-induced temperatures changes, J. Neural Eng. 3 (2006) 306-315.

DOI: 10.1088/1741-2560/3/4/008

Google Scholar

[18] M.M. Elwassif, A. Datta, A. Rahman, and M. Bikson, Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture, J. Neural Eng. 9 (2012).

DOI: 10.1088/1741-2560/9/4/046009

Google Scholar

[19] C.R. Pereira, L.A.S. Abreu, D.C. Knupp, and L.C.S. Jardim, Estimation of the brain temperature in deep brain stimulation application with the particle filter method, In. COBEM 2021: 26th International Congress of Mechanical Engineering.

DOI: 10.26678/abcm.cobem2021.cob2021-1582

Google Scholar

[20] Medtronic, and INC, DBS lead kit for deep brain stimulation, model 3387/3389, Implant Manual, Minneapolis, MN, US: [s.n.]. (2002).

Google Scholar

[21] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1 (1948) 93-122.

DOI: 10.1152/jappl.1948.1.2.93

Google Scholar

[22] I. Chang, Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity, Biomed. Eng. 2 (2003) 1-18.

DOI: 10.1186/1475-925x-2-12

Google Scholar

[23] B. Lamien, L.A. Varon, H.R. Orlande, and G.E. Eliçabe, State estimation in bioheat transfer: a comparison of particle filter algorithms, Int. J. Numer. Method H. 27 (2017) 615-638.

DOI: 10.1108/hff-03-2016-0118

Google Scholar

[24] I.M. Sobol, A Primer for the Monte Carlo Method, CRC Press, New York, 1994.

Google Scholar

[25] R.Y. Rubinstein and D.P. Kroese, Stimulation and the Monte Carlo Method, third ed., John Wiley & Sons, New Jersey, 2017.

Google Scholar

[26] D.A. Castello and T.G. Ritto, Quantificação de Incertezas a Estimação de Parâmetros em Dinâmica Estrutural: Uma Introdução a Partir de Exemplos Computacionais, v. 81, Notas em Matemática Aplicada, SBMAC, São Carlos, 2016.

DOI: 10.5540/001.2012.0035.01

Google Scholar

[27] N.P. da Silva, L.A.B. Varon, J.M.J. da Costa, and H.R.B. Orlande, Monte Carlo parameter estimation and direct simulation of in vitro hyrthermia-chemotherapy experiment, Numer. Heat Tr. A-Appl. 80 (2021) 185-209.

DOI: 10.1080/10407782.2021.1940009

Google Scholar

[28] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, v. 160, Applied Mathematical Sciences, Springer Science & Business Media, New York, 2006.

Google Scholar

[29] P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosseli, D. Payne, A. Klingenböck, and N. Kuster, "IT'IS Database for thermal and electromagnetic parameters of biological tissues", Version 4.1, Feb 22, 2022, DOI: 10.13099/VIP21000-04-1. itis.swiss/database/.

Google Scholar