[1]
R.K.C. Nkhoma, C.W. Siyasiya, W.E. Stumpf, Hot workability of AISI 321 and AISI 304 austenitic stainless steels, J. Alloys Compd. 595 (2014) 103–112.
DOI: 10.1016/j.jallcom.2014.01.157
Google Scholar
[2]
A.A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, A.G. Odeshi, A comparative study of the compressive behaviour of AISI 321 austenitic stainless steel under quasi-static and dynamic shock loading, Mater. Des. 112 (2016) 309–319.
DOI: 10.1016/j.matdes.2016.09.087
Google Scholar
[3]
J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang, H. Fan, Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding, Surf. Coatings Technol. 206 (2012) 3399–3404.
DOI: 10.1016/j.surfcoat.2012.01.063
Google Scholar
[4]
A.M.A. El-Rahman, An investigation on the microstructure, tribological and corrosion performance of AISI 321 stainless steel carbonitrided by RF plasma process, Surf. Coatings Technol. 205 (2010) 674–681.
DOI: 10.1016/j.surfcoat.2010.08.036
Google Scholar
[5]
H. Salhi, A. Chilali, M.E.A. Djeghlal, A. Omar, A. Montagne, A. Mejias, A. Iost, Indentation creep and tribological characterization of AISI 321, AISI 431 and FDMA borided and non-borided steels, Mater. Res. Express. 6 (2019) 096409.
DOI: 10.1088/2053-1591/ab2c98
Google Scholar
[6]
F.A.P. Fernandes, S.C. Heack, R.G. Pereira, A. Lombardi-Neto, G.E. Totten, L.C. Casteletti, Wear of plasma nitrided and nitrocarburized AISI 316L austenitic stainless steel, J. Achiev. Mater. Manuf. Eng. 40 (2010) 175–179.
Google Scholar
[7]
J. L. Dosset, G. E. Totten, Steel Heat Treating Fundamentals and Processes.ASM International, 2013.
Google Scholar
[8]
A. L. V. C. Silva, P. R. Mei, Aços e Ligas Especiais. 3° edição, Edgard Blucher, Rio de Janeiro, 2010.
Google Scholar
[9]
ASTM E3-2017 - Standard Guide for Preparation of Metallographic Specimens. American Society for Testing and Materials, v. 1. Reapproved, (2017)
Google Scholar
[10]
Information on https://wiki.anton-paar.com/br-pt/testes-de-indentacao-instrumentada-iit/
Google Scholar
[11]
ASTM A276-17 – Standard Specification for Stainless Steel Bars and Shapes. American Society for Testing and Materials. Reapproved, 2017.
Google Scholar
[12]
B. D. Beake, The influence of the H/E ratio on wear resistance of coating systems – Insights from small-scale testing, Surface and Coatings Technology, 442 (2022). p.128272
DOI: 10.1016/j.surfcoat.2022.128272
Google Scholar
[13]
K. V. Werner, H. L. Che, M. K. Lei, T. L. Christiansen and M.A. J, Sommers, Low Temperature Carburizing of Stainless Steels and the Development of Carbon Expanded Austenite*. HTM Journal of Heat Treatment and Materials, 77 (2022), p.3–15
DOI: 10.1515/htm-2022-0001
Google Scholar
[14]
J. Musil, Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering. in Nanostructured Coatings, eds. A. Cavaleiro and J.Th.M. De Hosson, Springer, New York, 2006, p.407–463.
DOI: 10.1007/978-0-387-48756-4_10
Google Scholar
[15]
J. Musil, Advanced hard coatings with enhanced toughness and resistance to cracking, Chapter 7, p.378–463, in: S. Zhang (Ed.), Thin Films and Coatings: Toughening and Toughness Characterisation, CRC Press, July 2015, p.383.
DOI: 10.1201/b18729-12
Google Scholar
[16]
J. Musil, Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness, Surf. Coat. Technol. 207 (2012) 50–65.
DOI: 10.1016/j.surfcoat.2012.05.073
Google Scholar
[17]
M. D. Manfrinato, L. S. de Almeida, L. S. Rossino, A. M. Kliauga, L. Melo-Maximo, D. V. Melo-Maximo, R. C. Moron, Scratch testing of plasma nitrided and nitrocarburized AISI 321 steel: Influence of the treatment temperature, Materials Letters 317 (2022) 132083.
DOI: 10.1016/j.matlet.2022.132083
Google Scholar
[18]
T. Bell, Y. Sun, A. Suhadi, Environmental and technical aspects of plasma nitrocarburising, Vacuum 59 (1) (2000) 14-23.
DOI: 10.1016/s0042-207x(00)00250-5
Google Scholar
[19]
K.V. Werner, H.L. Che, M.K. Lei, T.L. Christiansen, M.A.J. Somers, Low temperature carburizing of stainless steels and the development of carbon expanded austenite, HTM Journal of Heat Treatment and Materials 77(1) (2022) 3-15.
DOI: 10.1515/htm-2022-0001
Google Scholar