Drying of Industrial Sanitary Ware at Low Temperature: A Theoretical and Experimental Investigation

Article Preview

Abstract:

Sanitary ware, including toilets, washbasins, and bathtub, plays a crucial role in maintaining hygiene and sanitation in various settings. The drying process is a critical stage in the manufacturing of ceramic sanitary ware, as it influences product quality, production efficiency, and energy consumption. Then, the purpose of this work is to investigate the drying of sanitary ware at low temperature by experiments and empirical mathematical models. The idea is to accurately predict moisture loss of the ceramic parts under different operational conditions. Results of the drying kinetics have shown that higher temperatures and lower air relative humidity accelerate the drying process. Also, no cracks or fissures were observed as a result of drying sanitary ware at low temperatures and the two-term model provides the best fit for the dimensionless average moisture content as a function of the time. These findings contribute to a better understanding of the drying process and support the optimization of sanitary ware manufacturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-161

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Silvestri, A. Forcina, C. Silvestri, G. Ioppolo, Life cycle assessment of sanitaryware production: A case study in Italy, J. Clean. Prod. 251 (2020) 119708.

DOI: 10.1016/j.jclepro.2019.119708

Google Scholar

[2] J.B. Silva, G.S. Almeida, W.C.P.B. Lima, G.A. Neves, A.G.B. Lima, Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks, Defect Diffus. Forum 312 (2011) 971-976.

DOI: 10.4028/www.scientific.net/ddf.312-315.971

Google Scholar

[3] G.S. Almeida, M.A.F. Fernandes, J.N. Fernandes, G.A. Neves, W.M.P.B. Lima, A.G.B. Lima, Drying of industrial ceramic bricks: An experimental investigation in oven, Defect Diffus. Forum 353 (2014) 116–120.

DOI: 10.4028/www.scientific.net/ddf.353.116

Google Scholar

[4] R.S. Gomez, K.C. Gomes, J.M.A.M. Gurgel, L.B. Alves, H.L.F. Magalhães, R.A. Queiroga, G.C.P. Sousa, A.S. Oliveira, A.F. Vilela, B.T.A. Silva, D.B.T. Vasconcelos, G.R.F. Brito, A.G.B. Lima, Investigating the Drying Process of Ceramic Sanitary Ware at Low Temperature, Energies 16 (2023) 4242.

DOI: 10.3390/en16104242

Google Scholar

[5] M.K.T. Brito, D.B.T. Almeida, A.G.B. Lima, L.A. Rocha, E.S. Lima, V.A.B. Oliveira, Heat and Mass Transfer during Drying of Clay Ceramic Materials: A Three-Dimensional Analytical Study, Diffus. Found. 10 (2016) 93-106.

DOI: 10.4028/www.scientific.net/df.10.93

Google Scholar

[6] M.V. Araújo, J.M.P.Q. Delgado, A.G.B. Lima, On the Use of CFD in Thermal Analysis of Industrial Hollow Ceramic Brick, Diffus. Found. 10 (2017) 70-82.

DOI: 10.4028/www.scientific.net/df.10.70

Google Scholar

[7] J.B. Silva, G.S. Almeida, G.A. Neves, W.C.P.B. Lima, S.R. Farias Neto A.G.B. Lima, Heat and mass transfer and volume variations during drying of industrial ceramic bricks: an experimental investigation, Defect Diffus. Forum 326 (2012) 267-272.

DOI: 10.4028/www.scientific.net/ddf.326-328.267

Google Scholar

[8] V.S. Silva, J. Delgado, W.M.P.B. Lima, A.G.B. Lima, Heat and mass transfer in holed ceramic material using lumped model, Diffus. Found. 7 (2016) 30-52.

DOI: 10.4028/www.scientific.net/df.7.30

Google Scholar

[9] A. El-Beltagy, G.R. Gamea, A.H.A. Essa, Solar drying characteristics of strawberry, J. Food Eng., 78 (2007) 456-464.

DOI: 10.1016/j.jfoodeng.2005.10.015

Google Scholar

[10] E.O.M. Akoy, Experimental characterization and modeling of thin-layer drying of mango slices, Int. Food Res. J. 21 (2014) 1911.

Google Scholar

[11] A. Vega, E. Uribe, R. Lemus, M. Miranda, Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters, LWT-Food Sci. Technol., 40 (2007) 1698-1707.

DOI: 10.1016/j.lwt.2007.01.001

Google Scholar

[12] D.G.P. Kumar, H.U. Hebbar, M.N. Ramesh, Suitability of thin layer models for infrared–hot air-drying of onion slices, LWT-Food Sci. Technol., 39 (2006) 700-705.

DOI: 10.1016/j.lwt.2005.03.021

Google Scholar

[13] E. Meisami-Asl, S. Rafiee, A. Keyhani, A. Tabatabaeefar, Determination of suitable thin layer drying curve model for apple slices (variety-Golab), Plant Omics, 3 (2010) 103-108.

Google Scholar

[14] M.S. Zenoozian, H. Feng, S.M.A. Razavi, F. Shahidi, H.R. Pourreza, Image analysis and dynamic modeling of thin‐layer drying of osmotically dehydrated pumpkin, J. food Process. Preserv. 32 (2008) 88-102.

DOI: 10.1111/j.1745-4549.2007.00167.x

Google Scholar

[15] H. Darvishi, E. Hazbavi, Mathematical modeling of thin-layer drying behavior of date palm, Glob. J. Sci. Front. Res. Math. Decis. Sci., 12 (2012) 247-255.

Google Scholar

[16] K. Kaur, A.K. Singh, Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying, African J. Agric. Res. 9 (2014) 1036-1044.

DOI: 10.5897/ajar2013.7759

Google Scholar

[17] K. Sacilik, Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.), J. Food Eng. 79 (2007) 23-30.

DOI: 10.1016/j.jfoodeng.2006.01.023

Google Scholar

[18] K.K. Dash, S. Gope, A. Sethi, M. Doloi, Study on thin layer drying characteristics star fruit slices, Int. J. Agric. Food Sci. Technol, 4 (2013) 679-686.

Google Scholar

[19] N. Kumar, B.C. Sarkar, H.K. Sharma, Mathematical modelling of thin layer hot air drying of carrot pomace, J. Food Sci. Technol., 49 (2012) 33-41.

DOI: 10.1007/s13197-011-0266-7

Google Scholar

[20] V. Demir, T. Gunhan, A.K. Yagcioglu, Mathematical modelling of convection drying of green table olives, Biosyst. Eng., 98 (2007) 47-53.

DOI: 10.1016/j.biosystemseng.2007.06.011

Google Scholar

[21] L.R. Verma, R.A. Bucklin, J.B. Endan, F.T. Wratten, Effects of drying air parameters on rice drying models, Trans. ASAE, 28 (1985) 296-301.

DOI: 10.13031/2013.32245

Google Scholar

[22] O. Yaldýz, C. Ertekýn, Thin layer solar drying of some vegetables, Dry. Technol. 19 (2001) 583-597.

DOI: 10.1081/drt-100103936

Google Scholar

[23] P.L. Gan, P.E. Poh, Investigation on the effect of shapes on the drying kinetics and sensory evaluation study of dried jackfruit, Int. J. Sci. Eng., 7 (2014) 193-198.

DOI: 10.12777/ijse.7.2.193-198

Google Scholar

[24] M. Aghbashlo, M.H. Kianmehr, S. Khani, M. Ghasemi, Mathematical modelling of thin-layer drying of carrot, Int. Agrophysics, 23 (2009) 313-317.

Google Scholar

[25] A.O. Omolola, A.I.O. Jideani, P.F. Kapila, Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety, Int. J. Agric. Biol. Eng., 7 (2014) 107-113.

Google Scholar

[26] L. Diamante, M. Durand, G.P. Savage, L.P. Vanhanen, Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits, Int. Food Res. J., 17 (2010) 441-451.

Google Scholar

[27] D.A. Tzempelikos, A.P. Vouros, A.V Bardakas, A.E. Filios, D.P. Margaris, Experimental study on convective drying of quince slices and evaluation of thin-layer drying models, Eng. Agric. Environ. food, 8 (2015) 169-177.

DOI: 10.1016/j.eaef.2014.12.002

Google Scholar

[28] I.L. Pardeshi, S. Arora, P.A. Borker, Thin-layer drying of green peas and selection of a suitable thin-layer drying model, Dry. Technol., 27 (2009) 288-295.

DOI: 10.1080/07373930802606451

Google Scholar

[29] W.P. Silva, C.M. Silva, F.J.A. Gama, J.P. Gomes, Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas, J. Saudi Soc. Agric. Sci., 13 (2014) 67-74.

DOI: 10.1016/j.jssas.2013.01.003

Google Scholar

[30] W.P. Silva, A.F. Rodrigues, C.M.D.P.S. Silva, D.S. Castro, J.P. Gomes, Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes, J. Food Eng., 166 (2015) 230–236.

DOI: 10.1016/j.jfoodeng.2015.06.018

Google Scholar

[31] E.S. Lima, Heat and mass transfer in industrial ceramic bricks via concentrated analysis: estimation of drying process parameters, Master's Thesis, Mechanical Engineering, Federal University of Campina Grande, Campina Grande, Brazil, Campina Grande, 2020. (In Portuguese).

DOI: 10.21475/ajcs.2016.10.10.p7455

Google Scholar

[32] A.N. Spiess, N. Neumeyer, An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach, BMC Pharmacol., 10 (2010) 1-11.

DOI: 10.1186/1471-2210-10-6

Google Scholar

[33] J. Frost, Regression analysis: An intuitive guide for using and interpreting linear models. Statisics By Jim Publishing, 2019.

Google Scholar

[34] A. Sharma, Process modeling in welding, in: Pawan Rakesh, J. Paulo Davim (Eds.) Joining Processes for Dissimilar and Advanced Materials, Elsevier, 2022, pp.461-483.

DOI: 10.1016/b978-0-323-85399-6.00008-4

Google Scholar

[35] M.V. ARAÚJO, Numerical simulation via CFD of industrial ceramic brick drying, Ph.D. Thesis, Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil, 2019. (In Portuguese).

DOI: 10.21475/ajcs.2016.10.10.p7455

Google Scholar