[1]
L. Silvestri, A. Forcina, C. Silvestri, G. Ioppolo, Life cycle assessment of sanitaryware production: A case study in Italy, J. Clean. Prod. 251 (2020) 119708.
DOI: 10.1016/j.jclepro.2019.119708
Google Scholar
[2]
J.B. Silva, G.S. Almeida, W.C.P.B. Lima, G.A. Neves, A.G.B. Lima, Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks, Defect Diffus. Forum 312 (2011) 971-976.
DOI: 10.4028/www.scientific.net/ddf.312-315.971
Google Scholar
[3]
G.S. Almeida, M.A.F. Fernandes, J.N. Fernandes, G.A. Neves, W.M.P.B. Lima, A.G.B. Lima, Drying of industrial ceramic bricks: An experimental investigation in oven, Defect Diffus. Forum 353 (2014) 116–120.
DOI: 10.4028/www.scientific.net/ddf.353.116
Google Scholar
[4]
R.S. Gomez, K.C. Gomes, J.M.A.M. Gurgel, L.B. Alves, H.L.F. Magalhães, R.A. Queiroga, G.C.P. Sousa, A.S. Oliveira, A.F. Vilela, B.T.A. Silva, D.B.T. Vasconcelos, G.R.F. Brito, A.G.B. Lima, Investigating the Drying Process of Ceramic Sanitary Ware at Low Temperature, Energies 16 (2023) 4242.
DOI: 10.3390/en16104242
Google Scholar
[5]
M.K.T. Brito, D.B.T. Almeida, A.G.B. Lima, L.A. Rocha, E.S. Lima, V.A.B. Oliveira, Heat and Mass Transfer during Drying of Clay Ceramic Materials: A Three-Dimensional Analytical Study, Diffus. Found. 10 (2016) 93-106.
DOI: 10.4028/www.scientific.net/df.10.93
Google Scholar
[6]
M.V. Araújo, J.M.P.Q. Delgado, A.G.B. Lima, On the Use of CFD in Thermal Analysis of Industrial Hollow Ceramic Brick, Diffus. Found. 10 (2017) 70-82.
DOI: 10.4028/www.scientific.net/df.10.70
Google Scholar
[7]
J.B. Silva, G.S. Almeida, G.A. Neves, W.C.P.B. Lima, S.R. Farias Neto A.G.B. Lima, Heat and mass transfer and volume variations during drying of industrial ceramic bricks: an experimental investigation, Defect Diffus. Forum 326 (2012) 267-272.
DOI: 10.4028/www.scientific.net/ddf.326-328.267
Google Scholar
[8]
V.S. Silva, J. Delgado, W.M.P.B. Lima, A.G.B. Lima, Heat and mass transfer in holed ceramic material using lumped model, Diffus. Found. 7 (2016) 30-52.
DOI: 10.4028/www.scientific.net/df.7.30
Google Scholar
[9]
A. El-Beltagy, G.R. Gamea, A.H.A. Essa, Solar drying characteristics of strawberry, J. Food Eng., 78 (2007) 456-464.
DOI: 10.1016/j.jfoodeng.2005.10.015
Google Scholar
[10]
E.O.M. Akoy, Experimental characterization and modeling of thin-layer drying of mango slices, Int. Food Res. J. 21 (2014) 1911.
Google Scholar
[11]
A. Vega, E. Uribe, R. Lemus, M. Miranda, Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters, LWT-Food Sci. Technol., 40 (2007) 1698-1707.
DOI: 10.1016/j.lwt.2007.01.001
Google Scholar
[12]
D.G.P. Kumar, H.U. Hebbar, M.N. Ramesh, Suitability of thin layer models for infrared–hot air-drying of onion slices, LWT-Food Sci. Technol., 39 (2006) 700-705.
DOI: 10.1016/j.lwt.2005.03.021
Google Scholar
[13]
E. Meisami-Asl, S. Rafiee, A. Keyhani, A. Tabatabaeefar, Determination of suitable thin layer drying curve model for apple slices (variety-Golab), Plant Omics, 3 (2010) 103-108.
Google Scholar
[14]
M.S. Zenoozian, H. Feng, S.M.A. Razavi, F. Shahidi, H.R. Pourreza, Image analysis and dynamic modeling of thin‐layer drying of osmotically dehydrated pumpkin, J. food Process. Preserv. 32 (2008) 88-102.
DOI: 10.1111/j.1745-4549.2007.00167.x
Google Scholar
[15]
H. Darvishi, E. Hazbavi, Mathematical modeling of thin-layer drying behavior of date palm, Glob. J. Sci. Front. Res. Math. Decis. Sci., 12 (2012) 247-255.
Google Scholar
[16]
K. Kaur, A.K. Singh, Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying, African J. Agric. Res. 9 (2014) 1036-1044.
DOI: 10.5897/ajar2013.7759
Google Scholar
[17]
K. Sacilik, Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.), J. Food Eng. 79 (2007) 23-30.
DOI: 10.1016/j.jfoodeng.2006.01.023
Google Scholar
[18]
K.K. Dash, S. Gope, A. Sethi, M. Doloi, Study on thin layer drying characteristics star fruit slices, Int. J. Agric. Food Sci. Technol, 4 (2013) 679-686.
Google Scholar
[19]
N. Kumar, B.C. Sarkar, H.K. Sharma, Mathematical modelling of thin layer hot air drying of carrot pomace, J. Food Sci. Technol., 49 (2012) 33-41.
DOI: 10.1007/s13197-011-0266-7
Google Scholar
[20]
V. Demir, T. Gunhan, A.K. Yagcioglu, Mathematical modelling of convection drying of green table olives, Biosyst. Eng., 98 (2007) 47-53.
DOI: 10.1016/j.biosystemseng.2007.06.011
Google Scholar
[21]
L.R. Verma, R.A. Bucklin, J.B. Endan, F.T. Wratten, Effects of drying air parameters on rice drying models, Trans. ASAE, 28 (1985) 296-301.
DOI: 10.13031/2013.32245
Google Scholar
[22]
O. Yaldýz, C. Ertekýn, Thin layer solar drying of some vegetables, Dry. Technol. 19 (2001) 583-597.
DOI: 10.1081/drt-100103936
Google Scholar
[23]
P.L. Gan, P.E. Poh, Investigation on the effect of shapes on the drying kinetics and sensory evaluation study of dried jackfruit, Int. J. Sci. Eng., 7 (2014) 193-198.
DOI: 10.12777/ijse.7.2.193-198
Google Scholar
[24]
M. Aghbashlo, M.H. Kianmehr, S. Khani, M. Ghasemi, Mathematical modelling of thin-layer drying of carrot, Int. Agrophysics, 23 (2009) 313-317.
Google Scholar
[25]
A.O. Omolola, A.I.O. Jideani, P.F. Kapila, Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety, Int. J. Agric. Biol. Eng., 7 (2014) 107-113.
Google Scholar
[26]
L. Diamante, M. Durand, G.P. Savage, L.P. Vanhanen, Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits, Int. Food Res. J., 17 (2010) 441-451.
Google Scholar
[27]
D.A. Tzempelikos, A.P. Vouros, A.V Bardakas, A.E. Filios, D.P. Margaris, Experimental study on convective drying of quince slices and evaluation of thin-layer drying models, Eng. Agric. Environ. food, 8 (2015) 169-177.
DOI: 10.1016/j.eaef.2014.12.002
Google Scholar
[28]
I.L. Pardeshi, S. Arora, P.A. Borker, Thin-layer drying of green peas and selection of a suitable thin-layer drying model, Dry. Technol., 27 (2009) 288-295.
DOI: 10.1080/07373930802606451
Google Scholar
[29]
W.P. Silva, C.M. Silva, F.J.A. Gama, J.P. Gomes, Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas, J. Saudi Soc. Agric. Sci., 13 (2014) 67-74.
DOI: 10.1016/j.jssas.2013.01.003
Google Scholar
[30]
W.P. Silva, A.F. Rodrigues, C.M.D.P.S. Silva, D.S. Castro, J.P. Gomes, Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes, J. Food Eng., 166 (2015) 230–236.
DOI: 10.1016/j.jfoodeng.2015.06.018
Google Scholar
[31]
E.S. Lima, Heat and mass transfer in industrial ceramic bricks via concentrated analysis: estimation of drying process parameters, Master's Thesis, Mechanical Engineering, Federal University of Campina Grande, Campina Grande, Brazil, Campina Grande, 2020. (In Portuguese).
DOI: 10.21475/ajcs.2016.10.10.p7455
Google Scholar
[32]
A.N. Spiess, N. Neumeyer, An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach, BMC Pharmacol., 10 (2010) 1-11.
DOI: 10.1186/1471-2210-10-6
Google Scholar
[33]
J. Frost, Regression analysis: An intuitive guide for using and interpreting linear models. Statisics By Jim Publishing, 2019.
Google Scholar
[34]
A. Sharma, Process modeling in welding, in: Pawan Rakesh, J. Paulo Davim (Eds.) Joining Processes for Dissimilar and Advanced Materials, Elsevier, 2022, pp.461-483.
DOI: 10.1016/b978-0-323-85399-6.00008-4
Google Scholar
[35]
M.V. ARAÚJO, Numerical simulation via CFD of industrial ceramic brick drying, Ph.D. Thesis, Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil, 2019. (In Portuguese).
DOI: 10.21475/ajcs.2016.10.10.p7455
Google Scholar