Effect of Fe-Cr Coating on the Fe-Ga Alloy Functional Properties

Article Preview

Abstract:

Magnetron sputtering with a chromium-containing Fe-19at.%Cr alloy is used to improve the corrosion resistance of Fe-20at.%Ga alloy. The structure of the 2 μm coated layer and distribution of the elements (Fe, Cr, and Ga) are investigated. The bcc phase (A2 structure) is observed in the sputtered sample by XRD analysis. The corrosion resistance in 3.5%NaCl solution increases 14 times in the sample with 2 μm Fe-Cr coated layer. At the same time, the magnetron sputtering leads to a 10% decrease in magnetostriction and a 20% decrease in damping. This difference is explained by schemes of loading during magnetostriction and damping tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-178

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, T. Ma, M. Yan, Anomalous phase transformation in magnetostrictive Fe81Ga19 alloy, Journal of Magnetism and Magnetic Materials 322, 19 (2010) 2882-2887.

DOI: 10.1016/j.jmmm.2010.04.045

Google Scholar

[2] T. Jin, H. Wang, Y. Chen, T. Li, J. Wang, C. Jiang, Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys, Materials Characterization 186 (2022) 111780.

DOI: 10.1016/j.matchar.2022.111780

Google Scholar

[3] Y. Wu, Y. Chen, C. Meng, H. Wang, X. Ke, J. Wang, J. Liu, T. Zhang, R. Yu, J.M.D. Coey, C. Jiang, H. Xu, Multiscale influence of trace Tb addition on the magnetostriction and ductility of ⟨100⟩ oriented directionally solidified Fe-Ga crystals Physical Review Materials 3 (2019) 033401.

DOI: 10.1103/physrevmaterials.3.033401

Google Scholar

[4] M. Sun, A. Balagurov, I. Bobrikov, X. Wang, W. Wen, I. Golovin, Q. Fang, High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment, Journal of Materials Science & Technology 72 (2021) 69-80.

DOI: 10.1016/j.jmst.2020.07.043

Google Scholar

[5] L. Li, Y.X. Gao, M. Sun, K. Jing, Z. Zhuang, X.P. Wang, W.B. Jiang, Q.F. Fang, Effect of phase composition on the internal friction and magnetostriction in the L12/D03 biphase Fe-27Ga alloys, Journal of Alloys and Compounds 895, Part 2 (2022) 162661.

DOI: 10.1016/j.jallcom.2021.162661

Google Scholar

[6] M. Sun, W. Huang, L. Li, W. Jiang, R. Gao, W. Wen, T. Hao, X. Wang, Q. Fang, Behavior and mechanism of internal friction peak in quenched Fe-18 at.% Ga alloy, Journal of Alloys and Compounds 856 (2021) 158178.

DOI: 10.1016/j.jallcom.2020.158178

Google Scholar

[7] I.S. Golovin; V.V. Palacheva; A.A. Emdadi; M.Yu. Zadorozhnyy; A.V. Pozdniakov; A.I. Bazlov; E.S. Savchenko; J. Cifre; R. Barbin; S.A. Golovin. Structure and properties of high damping Fe-Ga based alloys, Kovove Materialia 53, 4 (2015) 267-274.

DOI: 10.4149/km_2015_4_267

Google Scholar

[8] J.R. Cullen, A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Magnetoelasticity of Fe–Ga and Fe–Al alloys, Journal of Magnetism and Magnetic Materials 226–230, Part 1 (2001) 948-949.

DOI: 10.1016/s0304-8853(00)00612-0

Google Scholar

[9] R.A. Kellogg, Development and Modeling of Iron–Gallium Alloys, PhD Thesis Engineering Mechanics, Iowa State University, Ames, Iowa (2003).

Google Scholar

[10] Golovin I.S. Anelastic Effects in Fe–Ga and Fe–Ga-Based Alloys: A Review. Materials. 2023; 16(6):2365.

DOI: 10.3390/ma16062365

Google Scholar

[11] Y. Ke, H.-H. Wu, S. Lan, H. Jiang, Y. Ren, S. Liu, C. Jiang, Tuning magnetostriction of Fe–Ga alloys via stress engineering, Journal of Alloys and Compounds 822 (2020) 153687.

DOI: 10.1016/j.jallcom.2020.153687

Google Scholar

[12] B. Huang, C. Zhang, G. Zhang, H. Liao, Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review, Surface and Coatings Technology 377 (2019) 124896.

DOI: 10.1016/j.surfcoat.2019.124896

Google Scholar

[13] I.S. Golovin, V. V. Palacheva, A. K. Mohamed, A. M. Balagurov. Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics. Fizika Metallov i Metallovedenie, 121, No. 9 (2020) 937–980.

DOI: 10.1134/s0031918x20090057

Google Scholar

[14] Q. Qi, J. Li, Z. Ding, X. Mu, Z. Tang, X. Bao, J. Zhu, X. Gao, Magnetostriction of Fe-Ga coatings and their application in ultrasonic guided wave sensing, Journal of Applied Physics 125 (2019) 043901.

DOI: 10.1063/1.5080256

Google Scholar

[15] Y.K. He, X.Q. Ke, C. Jiang, N.H. Miao, H. Wang, J.M. Coey, Y.Z. Wang and H.B. Xu, Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys, Adv. Funct. Mater. 28 (2018),1800858.

DOI: 10.1002/adfm.201800858

Google Scholar

[16] H. Wang, Y. Zheng, J. Liu, C. Jiang, Y. Li, In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials, Materials Science and Engineering: C 71 (2017) 60-66.

DOI: 10.1016/j.msec.2016.09.086

Google Scholar

[17] S.L. Zhao, J.J. Bai, Z.F. You, J.X. Li, Effects of Magnetic Field on Corrosion Behaviour of X100 Pipeline Steel in Simulated Soil Solution Containing Sulphate-Reducing Bacteria, Corrosion Science 167 (2020) 108539.

DOI: 10.20964/2021.12.48

Google Scholar

[18] T.V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, M.L. Free, Corrosion studies of single crystals of iron–gallium alloys in aqueous environments, Corrosion Science 49 (2007) 4015-4027.

DOI: 10.1016/j.corsci.2007.05.010

Google Scholar

[19] A.K. Mohamed, M.Yu. Zadorozhnyy, D.V. Saveliev, I.B. Chudakov, I.S. Golovin, Damping capacity, magnetic and mechanical properties of Fe-18Cr alloy, Journal of Magnetism and Magnetic Materials 494 (2020) 165777.

DOI: 10.1016/j.jmmm.2019.165777

Google Scholar

[20] Ph.V. Kiryukhantsev-Korneev, N.V. Shvyndina, A.D. Sytchenko, D.V. Shtansky, V.A. Gorshkov, E.A. Levashov, Healing effect in coatings deposited by hybrid technology of vacuum electro-spark alloying, pulsed cathodic arc evaporation, and magnetron sputtering using Cr3C2-NiAl electrodes. Journal of Physics: Conference Series 1431 (2020) 012027.

DOI: 10.1088/1742-6596/1431/1/012027

Google Scholar

[21] O.A. Petrii, R.R. Nazmutdinov, M.D. Bronshtein, G.A. Tsirlina, Life of the Tafel equation: Current understanding and prospects for the second century, Electrochimica Acta, 52/11 (2007) 3493-3504.

DOI: 10.1016/j.electacta.2006.10.014

Google Scholar

[22] H.H. Uhlig. Uhlig's Corrosion Handbook. Edited by R. Winston Revie -3rd ed. John Wiley & Sons Canada (2011) p.1296.

Google Scholar

[23] G.W. Smith, J.R. Birchak, Effect of Internal Stress Distribution on Magnetomechanical Damping, Journal of Applied Physics 39 (1968) 2311-2316.

DOI: 10.1063/1.1656551

Google Scholar

[24] L.R. Shaginyan, M. Mišina, J. Zemek, J. Musil, F.Regent, V.F. Britun, Composition, structure, microhardness, and residual stress of W–Ti–N films deposited by reactive magnetron sputtering, Thin Solid Films 408 (1-2) (2002) 136-147.

DOI: 10.1016/s0040-6090(02)00091-3

Google Scholar

[25] I.S. Golovin, V.V. Palacheva, J. Cifre, C. Jiang, Internal friction in Fe-Ga alloys at elevated temperatures, Journal of Alloys and Compounds, 785 (2019) 1257-1263.

DOI: 10.1016/j.jallcom.2019.01.265

Google Scholar

[26] Meng Sun, Weibin Jiang, Yubin Ke, Binghui Ge, Xianping Wang, Qianfeng Fang, Tetragonal dipole dominated Zener relaxation in BCC-structured Fe-17at.%Ga single crystals, Acta Materialia, 258 (2023) 119245.

DOI: 10.1016/j.actamat.2023.119245

Google Scholar

[27] F. Povolo, H.O. Mosca, Zener relaxation strength in b.c.c. and f.c.c. alloys, Journal of Alloys and Compounds, 211–212 (1994) 522-524.

DOI: 10.1016/0925-8388(94)90557-6

Google Scholar

[28] H. Mehrer, Self-Diffusion, Solute-Diffusion and Interdiffusion in Binary Intermetallics. Dif-fusion Foundations, vol. 2, Trans Tech Publications, Ltd., 2014, 1-72.

DOI: 10.4028/www.scientific.net/df.2.1

Google Scholar

[29] C. Zener, Elasticity and Anelasticity of Metals. The Univ. of Chicago Press, 1948.

Google Scholar