[1]
J. Zhang, T. Ma, M. Yan, Anomalous phase transformation in magnetostrictive Fe81Ga19 alloy, Journal of Magnetism and Magnetic Materials 322, 19 (2010) 2882-2887.
DOI: 10.1016/j.jmmm.2010.04.045
Google Scholar
[2]
T. Jin, H. Wang, Y. Chen, T. Li, J. Wang, C. Jiang, Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys, Materials Characterization 186 (2022) 111780.
DOI: 10.1016/j.matchar.2022.111780
Google Scholar
[3]
Y. Wu, Y. Chen, C. Meng, H. Wang, X. Ke, J. Wang, J. Liu, T. Zhang, R. Yu, J.M.D. Coey, C. Jiang, H. Xu, Multiscale influence of trace Tb addition on the magnetostriction and ductility of ⟨100⟩ oriented directionally solidified Fe-Ga crystals Physical Review Materials 3 (2019) 033401.
DOI: 10.1103/physrevmaterials.3.033401
Google Scholar
[4]
M. Sun, A. Balagurov, I. Bobrikov, X. Wang, W. Wen, I. Golovin, Q. Fang, High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment, Journal of Materials Science & Technology 72 (2021) 69-80.
DOI: 10.1016/j.jmst.2020.07.043
Google Scholar
[5]
L. Li, Y.X. Gao, M. Sun, K. Jing, Z. Zhuang, X.P. Wang, W.B. Jiang, Q.F. Fang, Effect of phase composition on the internal friction and magnetostriction in the L12/D03 biphase Fe-27Ga alloys, Journal of Alloys and Compounds 895, Part 2 (2022) 162661.
DOI: 10.1016/j.jallcom.2021.162661
Google Scholar
[6]
M. Sun, W. Huang, L. Li, W. Jiang, R. Gao, W. Wen, T. Hao, X. Wang, Q. Fang, Behavior and mechanism of internal friction peak in quenched Fe-18 at.% Ga alloy, Journal of Alloys and Compounds 856 (2021) 158178.
DOI: 10.1016/j.jallcom.2020.158178
Google Scholar
[7]
I.S. Golovin; V.V. Palacheva; A.A. Emdadi; M.Yu. Zadorozhnyy; A.V. Pozdniakov; A.I. Bazlov; E.S. Savchenko; J. Cifre; R. Barbin; S.A. Golovin. Structure and properties of high damping Fe-Ga based alloys, Kovove Materialia 53, 4 (2015) 267-274.
DOI: 10.4149/km_2015_4_267
Google Scholar
[8]
J.R. Cullen, A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Magnetoelasticity of Fe–Ga and Fe–Al alloys, Journal of Magnetism and Magnetic Materials 226–230, Part 1 (2001) 948-949.
DOI: 10.1016/s0304-8853(00)00612-0
Google Scholar
[9]
R.A. Kellogg, Development and Modeling of Iron–Gallium Alloys, PhD Thesis Engineering Mechanics, Iowa State University, Ames, Iowa (2003).
Google Scholar
[10]
Golovin I.S. Anelastic Effects in Fe–Ga and Fe–Ga-Based Alloys: A Review. Materials. 2023; 16(6):2365.
DOI: 10.3390/ma16062365
Google Scholar
[11]
Y. Ke, H.-H. Wu, S. Lan, H. Jiang, Y. Ren, S. Liu, C. Jiang, Tuning magnetostriction of Fe–Ga alloys via stress engineering, Journal of Alloys and Compounds 822 (2020) 153687.
DOI: 10.1016/j.jallcom.2020.153687
Google Scholar
[12]
B. Huang, C. Zhang, G. Zhang, H. Liao, Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review, Surface and Coatings Technology 377 (2019) 124896.
DOI: 10.1016/j.surfcoat.2019.124896
Google Scholar
[13]
I.S. Golovin, V. V. Palacheva, A. K. Mohamed, A. M. Balagurov. Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics. Fizika Metallov i Metallovedenie, 121, No. 9 (2020) 937–980.
DOI: 10.1134/s0031918x20090057
Google Scholar
[14]
Q. Qi, J. Li, Z. Ding, X. Mu, Z. Tang, X. Bao, J. Zhu, X. Gao, Magnetostriction of Fe-Ga coatings and their application in ultrasonic guided wave sensing, Journal of Applied Physics 125 (2019) 043901.
DOI: 10.1063/1.5080256
Google Scholar
[15]
Y.K. He, X.Q. Ke, C. Jiang, N.H. Miao, H. Wang, J.M. Coey, Y.Z. Wang and H.B. Xu, Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys, Adv. Funct. Mater. 28 (2018),1800858.
DOI: 10.1002/adfm.201800858
Google Scholar
[16]
H. Wang, Y. Zheng, J. Liu, C. Jiang, Y. Li, In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials, Materials Science and Engineering: C 71 (2017) 60-66.
DOI: 10.1016/j.msec.2016.09.086
Google Scholar
[17]
S.L. Zhao, J.J. Bai, Z.F. You, J.X. Li, Effects of Magnetic Field on Corrosion Behaviour of X100 Pipeline Steel in Simulated Soil Solution Containing Sulphate-Reducing Bacteria, Corrosion Science 167 (2020) 108539.
DOI: 10.20964/2021.12.48
Google Scholar
[18]
T.V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, M.L. Free, Corrosion studies of single crystals of iron–gallium alloys in aqueous environments, Corrosion Science 49 (2007) 4015-4027.
DOI: 10.1016/j.corsci.2007.05.010
Google Scholar
[19]
A.K. Mohamed, M.Yu. Zadorozhnyy, D.V. Saveliev, I.B. Chudakov, I.S. Golovin, Damping capacity, magnetic and mechanical properties of Fe-18Cr alloy, Journal of Magnetism and Magnetic Materials 494 (2020) 165777.
DOI: 10.1016/j.jmmm.2019.165777
Google Scholar
[20]
Ph.V. Kiryukhantsev-Korneev, N.V. Shvyndina, A.D. Sytchenko, D.V. Shtansky, V.A. Gorshkov, E.A. Levashov, Healing effect in coatings deposited by hybrid technology of vacuum electro-spark alloying, pulsed cathodic arc evaporation, and magnetron sputtering using Cr3C2-NiAl electrodes. Journal of Physics: Conference Series 1431 (2020) 012027.
DOI: 10.1088/1742-6596/1431/1/012027
Google Scholar
[21]
O.A. Petrii, R.R. Nazmutdinov, M.D. Bronshtein, G.A. Tsirlina, Life of the Tafel equation: Current understanding and prospects for the second century, Electrochimica Acta, 52/11 (2007) 3493-3504.
DOI: 10.1016/j.electacta.2006.10.014
Google Scholar
[22]
H.H. Uhlig. Uhlig's Corrosion Handbook. Edited by R. Winston Revie -3rd ed. John Wiley & Sons Canada (2011) p.1296.
Google Scholar
[23]
G.W. Smith, J.R. Birchak, Effect of Internal Stress Distribution on Magnetomechanical Damping, Journal of Applied Physics 39 (1968) 2311-2316.
DOI: 10.1063/1.1656551
Google Scholar
[24]
L.R. Shaginyan, M. Mišina, J. Zemek, J. Musil, F.Regent, V.F. Britun, Composition, structure, microhardness, and residual stress of W–Ti–N films deposited by reactive magnetron sputtering, Thin Solid Films 408 (1-2) (2002) 136-147.
DOI: 10.1016/s0040-6090(02)00091-3
Google Scholar
[25]
I.S. Golovin, V.V. Palacheva, J. Cifre, C. Jiang, Internal friction in Fe-Ga alloys at elevated temperatures, Journal of Alloys and Compounds, 785 (2019) 1257-1263.
DOI: 10.1016/j.jallcom.2019.01.265
Google Scholar
[26]
Meng Sun, Weibin Jiang, Yubin Ke, Binghui Ge, Xianping Wang, Qianfeng Fang, Tetragonal dipole dominated Zener relaxation in BCC-structured Fe-17at.%Ga single crystals, Acta Materialia, 258 (2023) 119245.
DOI: 10.1016/j.actamat.2023.119245
Google Scholar
[27]
F. Povolo, H.O. Mosca, Zener relaxation strength in b.c.c. and f.c.c. alloys, Journal of Alloys and Compounds, 211–212 (1994) 522-524.
DOI: 10.1016/0925-8388(94)90557-6
Google Scholar
[28]
H. Mehrer, Self-Diffusion, Solute-Diffusion and Interdiffusion in Binary Intermetallics. Dif-fusion Foundations, vol. 2, Trans Tech Publications, Ltd., 2014, 1-72.
DOI: 10.4028/www.scientific.net/df.2.1
Google Scholar
[29]
C. Zener, Elasticity and Anelasticity of Metals. The Univ. of Chicago Press, 1948.
Google Scholar