[1]
K.-K. Wong (Ed.), Properties of lithium niobate, INSPEC/IEE, London, 2002.
Google Scholar
[2]
T. Volk, R. Hull, R.M. Osgood, J. Parisi, H. Warlimont, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin, Heidelberg, 2008.
DOI: 10.1007/978-3-540-70766-0
Google Scholar
[3]
O. Sánchez-Dena, C.D. Fierro-Ruiz, S.D. Villalobos-Mendoza, D.M. Carrillo Flores, J.T. Elizalde-Galindo, R. Farías, Lithium Niobate Single Crystals and Powders Reviewed—Part I, Crystals 10 (2020) 973.
DOI: 10.3390/cryst10110973
Google Scholar
[4]
O. Sánchez-Dena, S.D. Villalobos-Mendoza, R. Farías, C.D. Fierro-Ruiz, Lithium Niobate Single Crystals and Powders Reviewed—Part II, Crystals 10 (2020) 990.
DOI: 10.3390/cryst10110990
Google Scholar
[5]
D. Xue, K. Betzler, H. Hesse, Dielectric properties of lithium niobate–tantalate crystals, Solid State Commun. 115 (2000) 581–585.
DOI: 10.1016/s0038-1098(00)00243-x
Google Scholar
[6]
Y. Suhak, D. Roshchupkin, B. Redkin, A. Kabir, B. Jerliu, S. Ganschow, H. Fritze, Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures, Crystals 11 (2021) 398.
DOI: 10.3390/cryst11040398
Google Scholar
[7]
U. Yakhnevych, C. Kofahl, S. Hurskyy, S. Ganschow, Y. Suhak, H. Schmidt, H. Fritze, Charge transport and acoustic loss in lithium niobate-lithium tantalate solid solutions at temperatures up to 900 °C, Solid State Ionics 392 (2023) 116147.
DOI: 10.1016/j.ssi.2023.116147
Google Scholar
[8]
G.E. Peterson, P.M. Bridenbaugh, P. Green, NMR Study of Ferroelectric LiNbO3 and LiTaO3 I, J Chem. Phys 46 (1967) 4009–4014.
DOI: 10.1063/1.1840478
Google Scholar
[9]
J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez, Hydrogen in lithium niobate, Adv. Phys. 45 (1996) 349–392.
DOI: 10.1080/00018739600101517
Google Scholar
[10]
S. Klauer, M. Wöhlecke, S. Kapphan, Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3, Phys. Rev. B 45 (1992) 2786–2799.
DOI: 10.1103/physrevb.45.2786
Google Scholar
[11]
T. Köhler, E. Mehner, J. Hanzig, G. Gärtner, C. Funke, Y. Joseph, T. Leisegang, H. Stöcker, D.C. Meyer, Kinetics of the hydrogen defect in congruent LiMO3, J. Mater. Chem. C 9 (2021) 2350–2367.
DOI: 10.1039/d0tc05236a
Google Scholar
[12]
J. Crank, The mathematics of diffusion, second. ed., Oxford University Press, 2011.
Google Scholar
[13]
R. Gonzalez, Y. Chen, K.L. Tsang, G.P. Summers, Diffusion of deuterium and hydrogen in crystalline LiNbO3, Appl. Phys. Lett. 41 (1982) 739–741.
DOI: 10.1063/1.93661
Google Scholar
[14]
L. Kovács, K. Polgár, R. Capelletti, C. Mora, Diffusion of Hydrogen Isotopes in Pure and Mg-Doped LiNbO3 Crystals, Phys. Stat. Solidi A 120 (1990) 97–104.
DOI: 10.1002/pssa.2211200107
Google Scholar
[15]
W. Beyer, Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon. Sol. Energy Mater. Sol. Cells 2003, 78, 235−267.
DOI: 10.1016/s0927-0248(02)00438-5
Google Scholar
[16]
H. H. Nahm, C. H. Park, Microscopic structure of hydrogen impurity in LiNbO3, Appl. Phys. Lett. 78 (2001) 3812-3814.
DOI: 10.1063/1.1376667
Google Scholar
[17]
C. Kofahl, L. Dörrer, B. Muscutt, S. Sanna, S. Hurskyy, U. Yakhnevych, Y. Suhak, H. Fritze, S. Ganschow, H. Schmidt, Li self-diffusion and ion conductivity in congruent and single crystals, Phys. Rev. Mater. 7 (2023) 033403.
DOI: 10.1103/physrevmaterials.7.033403
Google Scholar