Experiments on Hydrogen Uptake and Diffusion in LiNb0.15Ta0.85O3 Single Crystals by Infra-Red Spectroscopy

Article Preview

Abstract:

Hydrogen is an impurity that is often present in LiXO3 (X= Nb, Ta) single crystals and related materials. In this context, the diffusion of hydrogen is an important process because it may influence the overall conductivity of the material. We investigated the diffusional hydrogen uptake in LiNb0.15Ta0.85O3 single crystals at 600 °C. For the experiments, O2 is bubbled through liquid deuterated water (D2O), which leads to a saturation of the gas atmosphere with D2O that is incorporated into the crystal during isothermal annealing. The diffusivities of deuterium during uptake were determined by infra-red spectroscopy. We identified a fast process that can be associated with tracer diffusion and a second slower process with an almost three times lower diffusivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-143

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.-K. Wong (Ed.), Properties of lithium niobate, INSPEC/IEE, London, 2002.

Google Scholar

[2] T. Volk, R. Hull, R.M. Osgood, J. Parisi, H. Warlimont, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin, Heidelberg, 2008.

DOI: 10.1007/978-3-540-70766-0

Google Scholar

[3] O. Sánchez-Dena, C.D. Fierro-Ruiz, S.D. Villalobos-Mendoza, D.M. Carrillo Flores, J.T. Elizalde-Galindo, R. Farías, Lithium Niobate Single Crystals and Powders Reviewed—Part I, Crystals 10 (2020) 973.

DOI: 10.3390/cryst10110973

Google Scholar

[4] O. Sánchez-Dena, S.D. Villalobos-Mendoza, R. Farías, C.D. Fierro-Ruiz, Lithium Niobate Single Crystals and Powders Reviewed—Part II, Crystals 10 (2020) 990.

DOI: 10.3390/cryst10110990

Google Scholar

[5] D. Xue, K. Betzler, H. Hesse, Dielectric properties of lithium niobate–tantalate crystals, Solid State Commun. 115 (2000) 581–585.

DOI: 10.1016/s0038-1098(00)00243-x

Google Scholar

[6] Y. Suhak, D. Roshchupkin, B. Redkin, A. Kabir, B. Jerliu, S. Ganschow, H. Fritze, Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures, Crystals 11 (2021) 398.

DOI: 10.3390/cryst11040398

Google Scholar

[7] U. Yakhnevych, C. Kofahl, S. Hurskyy, S. Ganschow, Y. Suhak, H. Schmidt, H. Fritze, Charge transport and acoustic loss in lithium niobate-lithium tantalate solid solutions at temperatures up to 900 °C, Solid State Ionics 392 (2023) 116147.

DOI: 10.1016/j.ssi.2023.116147

Google Scholar

[8] G.E. Peterson, P.M. Bridenbaugh, P. Green, NMR Study of Ferroelectric LiNbO3 and LiTaO3 I, J Chem. Phys 46 (1967) 4009–4014.

DOI: 10.1063/1.1840478

Google Scholar

[9] J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez, Hydrogen in lithium niobate, Adv. Phys. 45 (1996) 349–392.

DOI: 10.1080/00018739600101517

Google Scholar

[10] S. Klauer, M. Wöhlecke, S. Kapphan, Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3, Phys. Rev. B 45 (1992) 2786–2799.

DOI: 10.1103/physrevb.45.2786

Google Scholar

[11] T. Köhler, E. Mehner, J. Hanzig, G. Gärtner, C. Funke, Y. Joseph, T. Leisegang, H. Stöcker, D.C. Meyer, Kinetics of the hydrogen defect in congruent LiMO3, J. Mater. Chem. C 9 (2021) 2350–2367.

DOI: 10.1039/d0tc05236a

Google Scholar

[12] J. Crank, The mathematics of diffusion, second. ed., Oxford University Press, 2011.

Google Scholar

[13] R. Gonzalez, Y. Chen, K.L. Tsang, G.P. Summers, Diffusion of deuterium and hydrogen in crystalline LiNbO3, Appl. Phys. Lett. 41 (1982) 739–741.

DOI: 10.1063/1.93661

Google Scholar

[14] L. Kovács, K. Polgár, R. Capelletti, C. Mora, Diffusion of Hydrogen Isotopes in Pure and Mg-Doped LiNbO3 Crystals, Phys. Stat. Solidi A 120 (1990) 97–104.

DOI: 10.1002/pssa.2211200107

Google Scholar

[15] W. Beyer, Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon. Sol. Energy Mater. Sol. Cells 2003, 78, 235−267.

DOI: 10.1016/s0927-0248(02)00438-5

Google Scholar

[16] H. H. Nahm, C. H. Park, Microscopic structure of hydrogen impurity in LiNbO3, Appl. Phys. Lett. 78 (2001) 3812-3814.

DOI: 10.1063/1.1376667

Google Scholar

[17] C. Kofahl, L. Dörrer, B. Muscutt, S. Sanna, S. Hurskyy, U. Yakhnevych, Y. Suhak, H. Fritze, S. Ganschow, H. Schmidt, Li self-diffusion and ion conductivity in congruent and single crystals, Phys. Rev. Mater. 7 (2023) 033403.

DOI: 10.1103/physrevmaterials.7.033403

Google Scholar